Preferred Language
Articles
/
Vha2ZIkBVTCNdQwCSYkW
Improvement of noisy images filtered by bilateral process using a multi-scale context aggregation network
...Show More Authors

Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Feb 28 2019
Journal Name
Journal Of Engineering
Modified W-LEACH Protocol in Wireless Sensor Network
...Show More Authors

In this paper, a Modified Weighted Low Energy Adaptive Clustering Hierarchy (MW-LEACH) protocol is implemented to improve the Quality of Service (QoS) in Wireless Sensor Network (WSN) with mobile sink node. The Quality of Service is measured in terms of Throughput Ratio (TR), Packet Loss Ratio (PLR) and Energy Consumption (EC). The protocol is implemented based on Python simulation. Simulation Results showed that the proposed protocol provides better Quality of Service in comparison with Weighted Low Energy Cluster Hierarchy (W-LEACH) protocol by 63%.

  

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Short Answers Assessment Approach based on Semantic Network
...Show More Authors

      Finding similarities in texts is important in many areas such as information retrieval, automated article scoring, and short answer categorization. Evaluating short answers is not an easy task due to differences in natural language. Methods for calculating the similarity between texts depend on semantic or grammatical aspects. This paper discusses a method for evaluating short answers using semantic networks to represent the typical (correct) answer and students' answers. The semantic network of nodes and relationships represents the text (answers). Moreover, grammatical aspects are found  by measuring the similarity of parts of speech between the answers. In addition, finding hierarchical relationships between nodes in netwo

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Network Traffic Prediction Based on Time Series Modeling
...Show More Authors

    Predicting the network traffic of web pages is one of the areas that has increased focus in recent years. Modeling traffic helps find strategies for distributing network loads, identifying user behaviors and malicious traffic, and predicting future trends. Many statistical and intelligent methods have been studied to predict web traffic using time series of network traffic. In this paper, the use of machine learning algorithms to model Wikipedia traffic using Google's time series dataset is studied. Two data sets were used for time series, data generalization, building a set of machine learning models (XGboost, Logistic Regression, Linear Regression, and Random Forest), and comparing the performance of the models using (SMAPE) and

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Trends In Network And Communications
Header Compression Scheme over Hybrid Satellite-WiMAX Network
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Residual Network with Attention to Neural Cells Segmentation
...Show More Authors

      Many neuroscience applications, including understanding the evolution of the brain, rely on neural cell instance segmentation, which seeks to integrate the identification and segmentation of neuronal cells in microscopic imagery. However, the task is complicated by cell adhesion, deformation, vague cell outlines, low-contrast cell protrusion structures, and background imperfections. On the other hand, existing segmentation approaches frequently produce inaccurate findings. As a result, an effective strategy for using the residual network with attention to segment cells is suggested in this paper. The segmentation mask of neural cells may be accurately predicted. This method is built on U-net, with EfficientNet serving as the e

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Thu Jan 14 2021
Journal Name
Iraqi Journal Of Science
Network Authentication Protocol Based on Secure Biometric NIDN
...Show More Authors

In this paper an authentication based finger print biometric system is proposed with personal identity information of name and birthday. A generation of National Identification Number (NIDN) is proposed in merging of finger print features and the personal identity information to generate the Quick Response code (QR) image that used in access system. In this paper two approaches are dependent, traditional authentication and strong identification with QR and NIDN information. The system shows accuracy of 96.153% with threshold value of 50. The accuracy reaches to 100% when the threshold value goes under 50.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Dec 31 2022
Journal Name
International Journal On “technical And Physical Problems Of Engineering”
Age Estimation Utilizing Deep Learning Convolutional Neural Network
...Show More Authors

Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes

... Show More
Scopus (10)
Scopus
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
An Artificial Intelligence-based Proactive Network Forensic Framework
...Show More Authors

     is at an all-time high in the modern period, and the majority of the population uses the Internet for all types of communication. It is great to be able to improvise like this. As a result of this trend, hackers have become increasingly focused on attacking the system/network in numerous ways. When a hacker commits a digital crime, it is examined in a reactive manner, which aids in the identification of the perpetrators. However, in the modern period, it is not expected to wait for an attack to occur. The user anticipates being able to predict a cyberattack before it causes damage to the system. This can be accomplished with the assistance of the proactive forensic framework presented in this study. The proposed system combines

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Dec 31 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Heavy Metals from Industrial Wastewater by Using RO Membrane
...Show More Authors

Industrial wastewater containing nickel, lead, and copper can be produced by many industries. The reverse osmosis (RO) membrane technologies are very efficient for the treatment of industrial wastewater containing nickel, lead, and copper ions to reduce water consumption and preserving the environment. Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50 to 200 ppm), pressures (1 to 4 bar), temperatures (10 to 40 oC), pH (2 to 5.5), and flow rates (10 to 40 L/hr), were prepared and subjected to treatment by RO system in the laboratory. The results showed that high removal efficiency of the heavy metals could be achieved by RO process (98.5%, 97.5% and 96% for Ni(II),

... Show More
View Publication Preview PDF