Low salinity (LS) water flooding is a promising EOR method which has been examined by many experimental studies and field pilots for a variety of reservoirs and oils. This paper investigates applying LS flooding to a heavy oil. Increasing the LS water temperature improves heavy oil recovery by achieving higher sweep efficiency and improving oil mobility by lowering its viscosity. Steam flooding projects have reported many problems such as steam gravity override, but override can be lessened if the steam is is alternated with hot LS water. In this study, a series of reservoir sandstone cores were obtained from Bartlesville Sandstone (in Eastern Kansas) and aged with heavy crude oil (from the same reservoir) at 95°C for 45 days. Five reservoir cores were used in this study, and five treatments were performed. They were flooded with (a) steam; (b) formation hot water (FHW); (c) low salinity hot water (LSHW; (d) steam + FHW; and (e) steam + LSHW (so-called LSASF). The laboratory experiments showed that basic water flooding using FW recovered approximately 50% of OOIP. After that initial flood, upon switching to the various steam, FHW, LSHW, steam + FHW, and steam + LSHW treatments, the incremental oil recoveries were 5, 3.1, 6.3, 7.5, and 12% OOIP, respectively. The contact angle measurements showed that injecting steam + LSHW alters the wettability considerably more than using steam + FHW. The results of this work show that water flooding using LSHW in reservoir cores could improve oil recovery significantly because it both reduces oil viscosity and alters the rock wettability towards more water-wet. The results also showed using LSHW alternated with steam is more beneficial than using steam only or alternated with regular water due to the combined benefits of reducing gravity override and altering the wettability. Using LSHW water is more economical than using steam and gives significantly improved oil recovery, and using LSHW is more beneficial than ambient temperature LS water.
Water balance as a technique is considered one of the means that is relied upon in solving significant hydrological problems. The soil and water assessment tool (SWAT) model was used in this study to assess the water balance in the Wadi Al-Mohammadi basin located at the eastern edge of the Western Desert. Digital elevation model, soil data, Land use - Land cover, and climate data represent the most important requirements for the SWAT model's input as a database. The Wadi Al-Mohammadi basin delineation results show the overall drainage area was 2286.8 km2 with seven sub-basins. The trend line of climate data indicates a clear increase in the total rainfall, relative humidity, temperature, and solar radiation from 1990-
... Show MoreThe reaction of 2-amino-benzothiazole with bis [O,O-2,3,O,O – 5,6 – (chloro(carboxylic) methiylidene) ] – L – ascorbic acid (L-AsCl2) gave new product 3-(Benzo[d]Thaizole-2-Yl) – 9-Oxo-6,7,7a,9-Tertrahydro-2H-2,10:4,7-Diepoxyfuro [3,2-f][1,5,3] Dioxazonine – 2,4 (3H) – Dicarboxylic Acid, Hydro-chloride (L-as-am)), which has been insulated and identified by (C, H, N) elemental microanalysis (Ft-IR),(U.v–vis), mass spectroscopy and H-NMR techniques. The (L-as am) ligand complexes were obtained by the reaction of (L-as-am) with [M(II) = Co,Ni,Cu, and Zn] metal ions. The synthesized complexes are characterized by Uv–Visible (Ft –IR), mass spectroscopy molar ratio, molar conductivity, and Magnetic susceptibility techniques. (
... Show MoreThe current work concerns preparing cobalt manganese ferrite (Co0.2Mn0.8Fe2O4) and decorating it with polyaniline (PAni) for supercapacitor applications. The X-ray diffraction findings (XRD) manifested a broad peak of PAni and a cubic structure of cobalt manganese ferrite with crystal sizes between 21 nm. The pictures were taken with a field emission scanning electron microscope (FE-SEM), which evidenced that the PAni has nanofibers (NFs) structures, grain size 33 – 55 nm, according to the method of preparation, where the hydrothermal method was used. The magnetic measurements (VSM) that were conducted at room temperature showed that the samples had definite magnetic properties. Additionally, it was noted that the saturation magnetizatio
... Show MoreThere is a mutual relationship between the form of a text and its meaning so as separating these two or devaluating the role of one of them leads to the absence of the value therein. Thus, a translation is important as to how it relates the details of a text. That is, the text has special features which go beyond form, and these set out its distinctiveness. Here, we tackle Saleh al-Jafari's Arabic translation of "Rubbayat al-Khayyam" of Naysapour descriptively and analytically by depending on extracts from the original text. This translation is evaluated on the basis of Spanish critic Maria Carmen Valero Garces. Herein, we discuss the effectiveness of this theory in the criticism of literary texts. It has been concluded that al-Jaf
... Show MoreSuperconducting compound Bi2Sr2-xYxCa2Cu3O10+δ were Synthesized by method of solid state reaction, at 1033 K for 160 hours temperature of the sintering at normal atmospheric pressure where substitutions Yttrium oxide with Strontium. When Y2O3 concentration (0.0, 0.1, 0.2, 0.3, 0.4 and 0.5). All specimens of Bi2Sr2Ca2Cu3O10+δ superconducting compounds were examined. The resistivity of electrical was checked by the four point probe technique, It was found th
six specimens of the Hg0.5Pb0.5Ba2Ca2Cu3-y
The reaction of LAs-Cl8 : [ (2,2- (1-(3,4-bis(carboxylicdichloromethoxy)-5-oxo-2,5dihydrofuran-2-yl)ethane – 1,2-diyl)bis(2,2-dichloroacetic acid)]with sodium azide in ethanol with drops of distilled water has been investigated . The new product L-AZ :(3Z ,5Z,8Z)-2azido-8-[azido(3Z,5Z)-2-azido-2,6-bis(azidocarbonyl)-8,9-dihydro-2H-1,7-dioxa-3,4,5triazonine-9-yl]methyl]-9-[(1-azido-1-hydroxy)methyl]-2H-1,7-dioxa-3,4,5-triazonine – 2,6 – dicarbonylazide was isolated and characterized by elemental analysis (C.H.N) , 1H-NMR , Mass spectrum and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the L-AZ withM+n: [ ( VO(II) , Cr(III) ,Mn(II) , Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) and
... Show More