A hydraulic platform was manufactured to serve palm trees and to enhance palm tree services, with a height of 12 meters, by the General Company for Hydraulic Industries, one of the Ministry of Industry's formations. This platform was tested in the field after being manufactured according to a randomized complete block design using split-split plots with three factors. The first factor represented the shape of the orchard land, with two levels (flat land and uneven land), serving as the main plots. The second factor had three levels representing palm tree heights (4, 8, and 12 meters), which served as the sub-plots. The third factor was the palm tree services, represented at three levels (pruning, pollination, and harvesting), with each treatment repeated three times. The measured characteristics of the platform test in the field included the costs, the power needed to operate the platform, and the force required to lift the palm platform. The effect of land nature on cost differed significantly at the 0.05 significance level. The costs amounted to 1,330.93 and 1,698.44 dinars per date palm for flat and uneven land, respectively. The effect of palm height on costs also differed significantly, with costs of 1,200.11, 1,510.28, and 1,833.67 dinars per palm for heights of 4, 8, and 12 meters, respectively. The power needed to operate the engine, which drives the pump to lift the hydraulic cylinders and the platform, was 1.44 kW. The force required to lift the platform and the scissors was 9,425.3 Newtons. There were no significant differences in the effect of the three factors in their single, double, and triple interactions regarding power and strength. It can be recommended to use the platform for operations on both flat and uneven lands at different heights and for various service operations with multiple palm trees.
In this work, Co-Y-oxide Nano Structure is successfully synthesized via hydrothermal method. The XRD analysis, SEM analysis, optical, electrical and photo sensing properties have been investigated for Co3O4 and Co-Y-oxide thin films. The X-ray diffraction (XRD) analysis reveals that all films are polycrystalline in nature, having cubic structure. The SEM images of thin films clearly indicates that Co3O4 possesses nanosphere like structure and flower like for Co-Y-oxide. The optical properties show that the optical energy gap follows allowed direct electronic transition calculated using Tauc equation and it increases for Co-Y-oxide. The photo sensing properties of thin films are investigated as a function of time at different wavelengths to
... Show MoreIn this work, chemical spray pyrolysis deposition (CSP) technique was used to prepare a mixed In2O3-CdO thin films with different CdO content (10, 30 and 50)%volume ratio on glass substrates at 150 ᵒC substrate temperature. The surface morphology and structural properties were measured to find the optimum conditions to improve thin films properties for using as photo detector. Current –Time, the sensitivity and response speed vary for each mixture. Samples with 10% vol. CdO content has square pulse response with average rise time nearly 1s and fall time 1s.
The paper discusses the structural and optical properties of In2O3 and In2O3-SnO2 gas sensor thin films were deposited on glass and silicon substrates and grown by irradiation of assistant microwave on seeded layer nucleated using spin coating technique. The X-ray diffraction revealed a polycrystalline nature of the cubic structure. Atomic Force Microscopy (AFM) used for morphology analysis that shown the grain size of the prepared thin film is less than 100 nm, surface roughness and root mean square for In2O3 where increased after loading SnO2, this addition is a challenge in gas sensing application. Sensitivity of In2O3 thin film against NO2 toxic gas is 35% at 300oC. Sensing properties were improved after adding Tin Oxide (SnO2) to be mo
... Show MoreThe advent of UNHCR reports has given rise to the uniqueness of its distinctive way of image representation and using semiotic features. So, there are a lot of researches that have investigated UNHCR reports, but no research has examined images in UNHCR reports of displaced Iraqis from a multimodal discourse perspective. The present study suggests that the images are, like language, rich in many potential meanings and are governed by clearly visual grammar structures that can be employed to decode these multiple meanings. Seven images are examined in terms of their representational, interactional and compositional aspects. Depending on the results, this study concludes that the findings support the visual grammar theory and highlight the va
... Show MoreOccurrence the heavy metals in water is one of the most important concerns. may cause savior health problems. In this work we made an attempt to know the quantity of six heavy metals in groundwater in different locations of Baghdad city. Examinations were made on groundwater of the review region to assess the heavy metals. Groundwater samples were gathered and analyzed utilizing Atomic Absorption Spectrophotometer for their Manganese, Iron, Zinc, Cadmium, Copper and Lead content and their levels compared with World Health Organization (WHO) specified maximum contaminant level. In order to accomplish this, water samples were obtained from 10 randomly selected wells in the region, in February and August, 2016. The study showed that the ground
... Show MoreThe study aims to integrate the visually impaired people into the art connoisseur community through producing special print artworks to enable the visually impaired people to use their other senses to feel artworks by using artistic printing techniques through adding some prominent materials to the printing colors or making an impact that visually impaired people can perceive using their other senses. This study also aims to set up art exhibitions that display tangible works that can enable visually impaired people to feel artwork and understand its elements to enable them to feel it through other senses.
The study follows the experimental method, through using artistic printing techniques, which allow printing with prominent textur
Nanofluids are proven to be efficient agents for wettability alteration in subsurface applications including enhanced oil recovery (EOR). Nanofluids can also be used for CO2-storage applications where the CO2-wet rocks can be rendered strongly water-wet, however no attention has been given to this aspect in the past. Thus in this work we presents contact angle (θ) measurements for CO2/brine/calcite system as function of pressure (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa), temperature (23 °C, 50 °C and 70 °C), and salinity (0, 5, 10, 15, and 20% NaCl) before and after nano-treatment to address the wettability alteration efficiency. Moreover, the effect of treatment pressure and temperature, treatment fluid concentration (SiO2 wt%) and
... Show More