Preferred Language
Articles
/
VRbmj4oBVTCNdQwCeZ_I
Myoelectric Control With Fixed Convolution-Based Time-Domain Feature Extraction: Exploring the Spatio–Temporal Interaction

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Sep 01 2021
Journal Name
Expert Systems With Applications
Scopus (17)
Crossref (17)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jul 01 2020
Journal Name
2020 42nd Annual International Conference Of The Ieee Engineering In Medicine & Biology Society (embc)
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Mon Dec 01 2014
Journal Name
2014 Ieee Student Conference On Research And Development
Scopus (9)
Crossref (9)
Scopus Crossref
View Publication
Publication Date
Sat Jan 01 2011
Journal Name
Organic & Biomolecular Chemistry
Crossref (32)
Crossref
View Publication
Publication Date
Thu Aug 30 2018
Journal Name
Iraqi Journal Of Science
Image Feature Extraction and Selection

Features are the description of the image contents which could be corner, blob or edge. Scale-Invariant Feature Transform (SIFT) extraction and description patent algorithm used widely in computer vision, it is fragmented to four main stages. This paper introduces image feature extraction using SIFT and chooses the most descriptive features among them by blurring image using Gaussian function and implementing Otsu segmentation algorithm on image, then applying Scale-Invariant Feature Transform feature extraction algorithm on segmented portions. On the other hand the SIFT feature extraction algorithm preceded by gray image normalization and binary thresholding as another preprocessing step. SIFT is a strong algorithm and gives more accura

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
Proceedings Of The 10th International Joint Conference On Computational Intelligence
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Mon Dec 19 2022
Journal Name
Drones
Practically Robust Fixed-Time Convergent Sliding Mode Control for Underactuated Aerial Flexible JointRobots Manipulators

The control of an aerial flexible joint robot (FJR) manipulator system with underactuation is a difficult task due to unavoidable factors, including, coupling, underactuation, nonlinearities, unmodeled uncertainties, and unpredictable external disturbances. To mitigate those issues, a new robust fixed-time sliding mode control (FxTSMC) is proposed by using a fixed-time sliding mode observer (FxTSMO) for the trajectory tracking problem of the FJR attached to the drones system. First, the underactuated FJR is comprehensively modeled and converted to a canonical model by employing two state transformations for ease of the control design. Then, based on the availability of the measured states, a cascaded FxTSMO (CFxTSMO) is constructed to estim

... Show More
Scopus (14)
Crossref (14)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature

... Show More
Scopus (15)
Crossref (6)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Feature Extraction Using Remote Sensing Images

Feature extraction provide a quick process for extracting object from remote sensing data (images) saving time to urban planner or GIS user from digitizing hundreds of time by hand. In the present work manual, rule based, and classification methods have been applied. And using an object- based approach to classify imagery. From the result, we obtained that each method is suitable for extraction depending on the properties of the object, for example, manual method is convenient for object, which is clear, and have sufficient area, also choosing scale and merge level have significant effect on the classification process and the accuracy of object extraction. Also from the results the rule-based method is more suitable method for extracting

... Show More
View Publication Preview PDF