This study presents an investigation about the effect of fire flame on the punching shear strength of hybrid fiber reinforced concrete flat plates. The main considered parameters are the fiber type (steel or glass) and the burning steady-state temperatures (500 and 600°C). A total of 9 half-scale flat plate specimens of dimensions 1500mm×1500mm×100mm and 1.5% fiber volume fraction were cast and divided into 3 groups. Each group consisted of 3 specimens that were identical to those in the other groups. The specimens of the second and the third groups were subjected to fire flame influence for 1 hour and steady-state temperature of 500 and 600°C respectively. Regarding the cooling process, water sprinkling was applied directly after the burning stage to represent the sudden cooling process. Generally, the obtained results exhibited a significant increase in the punching shear capacity of the fiber-reinforced slabs as compared to the corresponding no fiber-reinforced slabs even at elevated burning temperatures 600°C. The ultimate load was increased by about 16.6, 19, and 21.5% at temperatures of 25, 500, and 600°C respectively, for steel fiber reinforced slabs and by about 13.9, 27.2, and 34.6% for slabs containing two mixed types of fibers (steel and glass), as compared with the reference specimen at the same temperatures respectively. In addition, the results indicated that fibers' presence in concrete resulted in gradually punching failure with more ductile mode, whereas the failure was sudden with a brittle mode in the slabs that did not contain fibers.
Deep beams are used in wide construction fields such as water tanks, foundations, and girders in multi-story buildings to provide certain areas free of columns. In practice it is quite often occurring to create web opening in deep beams to supply convenient passage of ventilation ducts, cable channels, gas and water pipes. Experimental studies of ten 10 deep beams were carried out, where two of them are control specimens without openings and eight with large web openings in the shear spans. The variables that have been adopted are the ratio of the shear span to the overall depth of the member cross-section, location and dimensions of the opening. Test results showed that there was a decrease in the load carrying capacity of deep bea
... Show MoreBackground: The aim of the study was to investigate the effect of surface treatments of zirconia (grinding and sandblast with 50μm, 100 μm) on shear bond strength between zirconia core and veneering ceramic. Material and methods: Twenty-eight presintered Y-TZP ceramic specimens (IPS e.max ZirCAD, Ivoclar vivadent) were fabricated and sintered according to manufacturer’s instructions. The core specimens were divided randomly in to 4 groups, group 1: no surface treatment, group2: zirconia specimens were ground with silicon carbide paper up to1200 grit under water cooling, group3: zirconia specimens were ground and sandblast with 100 μm alumina, group 4: zirconia specimens were ground and sandblast with 50 μm alumina. Surfa
... Show MoreThis study aims to investigate the effect of changing skins material on the strength of sandwich plates with circular hole when subjected to mechanical loads. Theoretical, numerical and experimental analyses are done for sandwich plates with hole and with two face sheet materials. Theoretical analysis is performed by using sandwich plate theory which depends on the first order shear deformation theory for plates subjected to tension and bending separately. Finite element method was used to analyse numerically all cases by ANSYS program.
The sandwich plates were investigated experimentally under bending and buckling load separately. The relationship between stresses and the ratio of hole diameter to plate width (d/b) are built, by
... Show MoreExposure of reinforced concrete buildings to an accidental fire may result in cracking and loss in the bearing capacity of their major components, columns, beams, and slabs. It is a challenge for structural engineers to develop efficient retrofitting techniques that enable RC slabs to restore their structural integrity, after being exposed to intense fires for a long period of time. Experimental
investigation was carried out on twenty one slab specimens made of self compacting concrete, eighteen of them are retrofitted with CFRP sheets after burning and loading till failure while three of them (which represent control specimens) are retrofitted with CFRP sheet after loading till failure without burning. All slabs had been tested in a
This research studies the influence of water source on the compressive strength of high strength concrete. Four types of water source were adopted in both mixing and curing process these are river, tap, well and drainage water (all from Iraq-Diyala governorate). Chemical analysis was carried out for all types of the used water including (pH, total dissolved solids (TDS), Turbidity, chloride, total suspended solid (TSS), and sulfates). Depending on the chemical analysis results, it was found that for all adopted sources the chemical compositions was within the ASTM C 1602/C 1602M-04 limits and can be satisfactorily used in concrete mixtures. Mixture of high strength concrete for compressive strength of (60 MPa) was designed and checked using
... Show MoreBackground: Debonding and fracture of artificial teeth from denture bases are common clinical problem, bonding of artificial teeth to heat cure acrylic and high impact heat cure acrylic denture base materials with autoclave processing method is not well known. The aim of this study was to evaluate the effect of autoclave processing method on shear bond of artificial teeth to heat cure denture base material and high impact heat cure denture base material. Materials and methods: Heat polymerized (Vertex) and high impact acrylic (Vertex) acrylic resins were used. Teeth were processed to each of the denture base materials after the application of different surface treatments. The sample (which consist of artificial tooth attached to the dentur
... Show MoreThis paper is devoted to investigate experimentally and theoretically the structural behavior of reinforced concrete hollow beams which have internal transverse ribs under effect of shear. The number of the internal ribs is the major variable adopted in this research, while, the other variables are kept constant for all tested specimens. The experimental part includes poured and test of four (200x300x1200mm) beam specimens, three of these specimens were hollow with different locations of internal ribs and one of them was solid. The experimental results indicated that the shear strength are increased (33%) to (60%) for beams containing internal ribs in comparison with reference beam. Also, the change of beam state from ho
... Show MoreBackground and objectives: This study aimed at testing the effect of plastic sleeve or barrier, used to cover the guide of the light cure unit to prevent cross-infection, on the shear bond strength and site of bond failure of stainless steel and ceramic orthodontic brackets. Materials and methods: Forty orthodontic brackets; twenty stainless steel and twenty ceramic brackets bonded to forty extracted human maxillary first premolars using light cure adhesive cured with and without the use of a protective plastic barrier on the guide. Comparing the effect of this barrier on the shear bond strength and adhesive remnant index was performed using an independent t-test and Chi-square test. Results: The protective barrier had decreased the shear b
... Show MoreBackground: the aim of this study was to evaluate the effect of different surface acids treatments (37%phospjoric acid, 5%hydrofluoric acid, 1.23 acidulated phosphate fluoride) of feldspathic ceramic VITA 3D MASTER , and the effect of thermocycling on shear bond strength using a ceramic repair kit (ivoclar/vivadent). Material and Methods: sixty Nickel-Chromium metal base plates were prepared(9mm diameter,3mm depth) using lost wax technique, 2mm thick layer of ceramic(VITA 3D MASTER) fused to metal plates, all specimens were embedded in acrylic resin blocks except their examined surfaces and divided into 3 main groups 20 specimens each, Grp A: treatment with 37%phosphoric acid for 2 mins, Grp B: etching with 5% hydrofluoric acid for 2mins,
... Show More