The map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in permeability prediction and compared its results with the flow zone indicator methods for a carbonate heterogeneous Iraqi formation. The methodology of the research can be Summarized by permeability was estimated by using two methods: Flow zone indicator and Artificial intelligence, two reservoir models are built, where the difference between them is in permeability method estimation, and the simulation run will be conducted on both of the models, and the permeability estimation methods will be examined by comparing their effect on the model history matching. The results showed that the model with permeability predicted by using artificial intelligence matched the observed data for different reservoir responses more accurately than the model with permeability predicted by the flow zone indicator method. That conclusion is represented by good matching between observed data and simulated results for all reservoir responses such for the artificial intelligence model than the flow zone indicator model.
The study of properties of space of entire functions of several complex variables was initiated by Kamthan [4] using the topological properties of the space. We have introduced in this paper the sub-space of space of entire functions of several complex variables which is studied by Kamthan.
As computers become part of our everyday life, more and more people are experiencing a
variety of ocular symptoms related to computer use. These include eyestrain, tired eyes, irritation,
redness, blurred vision, and double vision, collectively referred to as computer vision syndrome.
The effect of CVS to the body such as back and shoulder pain, wrist problem and neck pain.
Many risk factors are identified in this paper.
Primary prevention strategies have largely been confined to addressing environmental
exposure to ergonomic risk factors, since to date, no clear cause for this work-related neck pain
has been acknowledged. Today, millions of children use computers on a daily basis. Extensive
viewing of the compute
In this work, metal oxides nanostructures, mainly, copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure were synthesized by dc reactive magnetron sputtering technique. The structural purity and nanoparticle size of the prepared nanostructures were determined. The individual metal oxide samples (CuO, NiO and TiO2) showed high structural purity and minimum particle sizes of 34, 44, 61 nm, respectively. As well, the multilayer structure showed high structural purity as no elements or compounds other than the three oxides were founds in the final sample while the minimum particle size was 18 nm. This reduction in nanoparticle size can be considered as an advantage for the dc reactive magnetron sputtering tec
... Show MoreIsolated Bacteria from the roots of barley were studied; two stages of processes Isolated and screening were applied in order to find the best bacteria to remove kerosene from soil. The active bacteria are isolated for kerosene degradation process. It has been found that Klebsiella pneumoniae sp. have the highest kerosene degradation which is 88.5%. The optimum conditions of kerosene degradation by Klebsiella pneumonia sp. are pH5, 48hr incubation period, 35°C temperature and 10000ppm the best kerosene concentration. The results 10000ppm showed that the maximum kerosene degradation can reach 99.58% after 48 h of incubation. Higher Kerosene degradation which was 99.83% was obtained at pH5. Kerosene degradation was found to be maximum at 3
... Show MoreBackground: Painful elbow joint over the lateral epicondyle especially with resisted wrist extension are common signs of lateral epicondyle tendinopathy, also called tennis elbow. Objective: To evaluate the clinical outcome of local platelet rich plasma (PRP) injection in patients with chronic tennis elbow compared with a steroid (Depomedrol 40 mg) injection. Methods: A total of 88 patients with chronic tennis elbow were treated at Al-Kindy Teaching Hospital and private clinics. All patients had chronic pain for about 24 weeks or more and had failed first line treatment. The patients dividing into two groups, Group A injected with PRP (n = 44), and group B injected with depomedrol 40 mg (n = 44). A good clinical result w
... Show MoreIsolated Bacteria from the roots of barley were studied; two stages of processes Isolated and screening were applied in order to nd the best bacteria to remove kerosene from soil. The acve bacteria are isolated for kerosene degradaon process. It has been found that Klebsiella pneumoniae sp. have the highest kerosene degradaon which is 88.5%. The opmum condions of kerosene degradaon by Klebsiella pneumonia sp. are pH5, 48hr incubaon period, 35°C temperature and 10000ppm the best kerosene concentraon. The results 10000ppm showed that the maximum kerosene degradaon can reach 99.58% aer 48 h of incubaon. Higher Kerosene degradaon which was 99.83% was obtained at pH5. Kerosene degradaon was found
... Show More
