The necessities of steganography methods for hiding secret message into images have been ascend. Thereby, this study is to generate a practical steganography procedure to hide text into image. This operation allows the user to provide the system with both text and cover image, and to find a resulting image that comprises the hidden text inside. The suggested technique is to hide a text inside the header formats of a digital image. Least Significant Bit (LSB) method to hide the message or text, in order to keep the features and characteristics of the original image are used. A new method is applied via using the whole image (header formats) to hide the image. From the experimental results, suggested technique that gives a higher embedding of several stages of complexity. Also, LSB method via using the whole image is to increase the security and robustness of the proposed method as compared to state-of the-art methods.
In aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show MoreToday in the digital realm, where images constitute the massive resource of the social media base but unfortunately suffer from two issues of size and transmission, compression is the ideal solution. Pixel base techniques are one of the modern spatially optimized modeling techniques of deterministic and probabilistic bases that imply mean, index, and residual. This paper introduces adaptive pixel-based coding techniques for the probabilistic part of a lossy scheme by incorporating the MMSA of the C321 base along with the utilization of the deterministic part losslessly. The tested results achieved higher size reduction performance compared to the traditional pixel-based techniques and the standard JPEG by about 40% and 50%,
... Show MoreWith the increased development in digital media and communication, the need for methods to protection and security became very important factor, where the exchange and transmit date over communication channel led to make effort to protect these data from unauthentication access.
This paper present a new method to protect color image from unauthentication access using watermarking. The watermarking algorithm hide the encoded mark image in frequency domain using Discrete Cosine Transform. The main principle of the algorithm is encode frequent mark in cover color image. The watermark image bits are spread by repeat the mark and arrange in encoded method that provide algorithm more robustness and security. The propos
... Show MoreMedical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w
... Show MoreDue to the vast using of digital images and the fast evolution in computer science and especially the using of images in the social network.This lead to focus on securing these images and protect it against attackers, many techniques are proposed to achieve this goal. In this paper we proposed a new chaotic method to enhance AES (Advanced Encryption Standards) by eliminating Mix-Columns transformation to reduce time consuming and using palmprint biometric and Lorenz chaotic system to enhance authentication and security of the image, by using chaotic system that adds more sensitivity to the encryption system and authentication for the system.
Image retrieval is used in searching for images from images database. In this paper, content – based image retrieval (CBIR) using four feature extraction techniques has been achieved. The four techniques are colored histogram features technique, properties features technique, gray level co- occurrence matrix (GLCM) statistical features technique and hybrid technique. The features are extracted from the data base images and query (test) images in order to find the similarity measure. The similarity-based matching is very important in CBIR, so, three types of similarity measure are used, normalized Mahalanobis distance, Euclidean distance and Manhattan distance. A comparison between them has been implemented. From the results, it is conclud
... Show MoreLowpass spatial filters are adopted to match the noise statistics of the degradation seeking
good quality smoothed images. This study imply different size and shape of smoothing
windows. The study shows that using a window square frame shape gives good quality
smoothing and at the same time preserving a certain level of high frequency components in
comparsion with standard smoothing filters.
In this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.