Preferred Language
Articles
/
V0KP7psBMeyNPGM3IOKw
From Algorithms to Applications: A Review of AI-Based Face Recognition and Identity Verification
...Show More Authors

Face recognition and identity verification are now critical components of current security and verification technology. The main objective of this review is to identify the most important deep learning techniques that have contributed to the improvement in the accuracy and reliability of facial recognition systems, as well as highlighting existing problems and potential future research areas. An extensive literature review was conducted with the assistance of leading scientific databases such as IEEE Xplore, ScienceDirect, and SpringerLink and covered studies from the period 2015 to 2024. The studies of interest were related to the application of deep neural networks, i.e., CNN, Siamese, and Transformer-based models, in face recognition and identity verification systems. Deep learning-based approaches have been shown through cross-sectional studies to improve recognition accuracy under diverse environmental and demographic conditions. Anti-counterfeiting (Anti-Spoofing) and real presence detection features integrated into systems have likewise enhanced system security against advanced attacks such as 3D masks, false images and videos, and Deepfake technology. Future trends point to the need to develop deep, multi-sensory and interpretable learning models, and adopt learning strategies based on limited data, while adhering to legal and ethical frameworks to ensure fairness andtransparency.

Crossref
View Publication
Publication Date
Thu Nov 01 2018
Journal Name
2018 1st Annual International Conference On Information And Sciences (aicis)
Speech Emotion Recognition Using Minimum Extracted Features
...Show More Authors

Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Isolated Word Speech Recognition Using Mixed Transform
...Show More Authors

Methods of speech recognition have been the subject of several studies over the past decade. Speech recognition has been one of the most exciting areas of the signal processing. Mixed transform is a useful tool for speech signal processing; it is developed for its abilities of improvement in feature extraction. Speech recognition includes three important stages, preprocessing, feature extraction, and classification. Recognition accuracy is so affected by the features extraction stage; therefore different models of mixed transform for feature extraction were proposed. The properties of the recorded isolated word will be 1-D, which achieve the conversion of each 1-D word into a 2-D form. The second step of the word recognizer requires, the

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Optical Character Recognition Using Active Contour Segmentation
...Show More Authors

Document analysis of images snapped by camera is a growing challenge. These photos are often poor-quality compound images, composed of various objects and text; this makes automatic analysis complicated. OCR is one of the image processing techniques which is used to perform automatic identification of texts. Existing image processing techniques need to manage many parameters in order to clearly recognize the text in such pictures. Segmentation is regarded one of these essential parameters. This paper discusses the accuracy of segmentation process and its effect over the recognition process. According to the proposed method, the images were firstly filtered using the wiener filter then the active contour algorithm could b

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 01 2011
Journal Name
Al-khwarizmi Engineering Journal
Noise Removal of ECG Signal Using Recursive Least Square Algorithms
...Show More Authors

This paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.

View Publication Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Analyzing the behavior of different classification algorithms in diabetes prediction
...Show More Authors

<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Process Safety And Environmental Protection
Applications of advanced oxidation processes (Electro‑Fenton and sono‑electro‑Fenton) for COD removal from hospital wastewater: Optimization using response surface methodology
...Show More Authors

View Publication
Scopus (57)
Crossref (58)
Scopus Clarivate Crossref
Publication Date
Wed Jun 29 2016
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
EFFECT OF USE MICROWAVE RADIATION IN SOM FOODS AND IABORATORY APPLICATIONS.: EFFECT OF USE MICROWAVE RADIATION IN SOM FOODS AND IABORATORY APPLICATIONS.
...Show More Authors

study the effect of radiation microwave (MW) in inhibition the growth of some types of bacteria in a minced meat and barker were exposed to MW for different times included (0, 10, 20, 30 and 40) sec.The results showed a high inhibition rate for 40 sec, reached to 100%. It is the other side studied the effect of microwave radiation against four types of bacteria included (Staphylococcus aureus, Escherichia coli, Proteus mirabilis and Klebsiella spp), when were exposed to for (0, 5, 10, 20, 30 and 40) sec the inhibition ratio reached to 100% in each of the Proteus mirabilis and Klebsiella spp at 30 sec and Staphylococcus aureus and Escherichia coli at 40sec. using MW in the sterilization media, such as Nutrient agar, Macconkey agar and Man

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 31 2025
Journal Name
Passer Journal Of Basic And Applied Sciences
Enhanced Security Taxonomy for Fog-Enabled VANETs: A Comprehensive Survey on Attacks, Challenges, Applications and Architectures
...Show More Authors

Vehicular Ad Hoc Networks (VANETs) are integral to Intelligent Transportation Systems (ITS), enabling real-time communication between vehicles and infrastructure to enhance traffic flow, road safety, and passenger experience. However, the open and dynamic nature of VANETs presents significant privacy and security challenges, including data eavesdropping, message manipulation, and unauthorized access. This study addresses these concerns by leveraging advancements in Fog Computing (FC), which offers lowlatency, distributed data processing near-end devices to enhance the resilience and security of VANET communications. The paper comprehensively analyzes the security frameworks for fog-enabled VANETs, introducing a novel taxonomy that c

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Fri Apr 14 2023
Journal Name
Journal Of Big Data
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
...Show More Authors
Abstract<p>Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for</p> ... Show More
View Publication Preview PDF
Scopus (608)
Crossref (605)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
The study of the literature review of hybrid classification approaches to credit scoring
...Show More Authors

View Publication
Scopus Crossref