This study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substantial improvement of 59.90% is observed for data files sized at 1500000kb. Partitioning larger files notably reduces encryption time, while smaller files experience marginal benefits. Certain file types benefit from both strategies. Evaluation metrics include encryption execution time and throughput, consistently demonstrating ERC5's superiority over the original RC5. Moreover, ERC5 exhibits reduced power consumption and heightened throughput, highlighting its multifaceted benefits in resource-constrained environments. ERC5 is developed and tested on various file types and sizes to evaluate encryption speed, power consumption, and throughput. ERC5 significantly improves encryption speed across different file types and sizes, with notable gains for audio, image, and large data files. While partitioning smaller files only slightly improves encryption time, larger files partitioning yields faster results. Future research could explore ERC5 optimizations for different computing environments, its integration into real-time encryption scenarios, and its impact on other cryptographic operations and security protocols.
This paper demonstrates the spatial response uniformity (SRU) of two types of heterojunctions (CdS, PbS /Si) laser detectors. The spatial response nonuniformity of these heterojunctions is not significant and it is negligible in comparison with p+- n silicon photodiode. Experimental results show that the uniformity of CdS /Si is better than that of PbS /Si heterojunction
This paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin
... Show MoreThe present study aims to investigate the various request constructions used in Classical Arabic and Modern Arabic language by identifying the differences in their usage in these two different genres. Also, the study attempts to trace the cases of felicitous and infelicitous requests in the Arabic language. Methodologically, the current study employs a web-based corpus tool (Sketch Engine) to analyze different corpora: the first one is Classical Arabic, represented by King Saud University Corpus of Classical Arabic, while the second is The Arabic Web Corpus “arTenTen” representing Modern Arabic. To do so, the study relies on felicity conditions to qualitatively interpret the quantitative data, i.e., following a mixed mode method
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreThe research aims to identify the level of functional engagement and hope-based thinking of kindergarten teachers, identify if there is a significant difference in functional engagement and hope-based thinking in terms of specialization and years of service for kindergarten teachers, identify if there is a significant correlation between functional engagement and hope-based thinking of kindergarten teachers. The current research is determined by kindergarten teachers in the Second Rusafa Baghdad Education Directorate for the academic year (2022-2023). In order to achieve the objectives of the research, the researcher prepared a functional engagement scale, which consists of (45) items in three areas: Perceptual and functional engagement
... Show More