ABSTRACT: BACKGROUND: Left ventricular hypertrophy is a significant risk factor for cardiovascular complications such as ischemic heart disease, heart failure, sudden death, atrial fibrillation, and stroke. A proper non-expensive tool is required for detection of this pathology. Different electrocardiographic (ECG) criteria were investigated; however, the results were conflicting regarding the accuracy of these criteria. OBJECTIVE: To assess the accuracy of three electrocardiographic criteria in diagnosis of left ventricular hypertrophy in adult patients with hypertension using echocardiography as a reference test. PATIENTS AND METHODS: This is a hospital-based cross sectional observational study which included 340 adult patients with a history of hypertension (240 patients with left ventricular hypertrophy and 100 patients without depending on Echocardiographic results). Three electrocardiographic criteria including Sokolow Lyon Voltage, Cornell voltage, and Cornell voltage duration were evaluated for their sensitivity and specificity in detection of left ventricular hypertrophy in those patients. RESULTS: Each of older ages (over 50 years) (OR= (OR=6.25, 95%CI=3.75-10.39, p<0.001), male gender (OR=0.58, 95% CI= 0.36-0.93, p= 0.018) and type 2 diabetes mellitus (OR=8.14, 95%CI= 4.04-16.41, p<0.001) were significantly associated with development of left ventricular hypertrophy in patients with hypertension. The sensitivity and specificity of Sokolow Lyon Voltage, Cornell voltage, and Cornell voltage duration were 17.5% and 96%; 13.33% and 97%; and 10% and 98%, respectively. CONCLUSION: Older ages, male gender, and type 2 diabetes mellitus can increase the risk of left ventricular hypertrophy in hypertensive patients. All the studied criteria have low sensitivity and high specificity in recognition of the left ventricular hypertrophy in patients with hypertension, with no advantage of definite criterion over the others.
An intrusion detection system (IDS) is key to having a comprehensive cybersecurity solution against any attack, and artificial intelligence techniques have been combined with all the features of the IoT to improve security. In response to this, in this research, an IDS technique driven by a modified random forest algorithm has been formulated to improve the system for IoT. To this end, the target is made as one-hot encoding, bootstrapping with less redundancy, adding a hybrid features selection method into the random forest algorithm, and modifying the ranking stage in the random forest algorithm. Furthermore, three datasets have been used in this research, IoTID20, UNSW-NB15, and IoT-23. The results are compared with the three datasets men
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreThe transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreThe aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di
... Show MoreAbstract In this study, an investigation is conducted to realise the possibility of organic materials use in radio frequency (RF) electronics for RF-energy harvesting. Iraqi palm tree remnants mixed with nickel oxide nanoparticles hosted in polyethylene, INP substrates, is proposed for this study. Moreover, a metamaterial (MTM) antenna is printed on the created INP substrate of 0.8 mm thickness using silver nanoparticles conductive ink. The fabricated antenna performances are instigated numerically than validated experimentally in terms of S11 spectra and radiation patterns. It is found that the proposed antenna shows an ultra-wide band matching bandwidth to cover the frequencies from 2.4 to 10 GHz with bore-sight gain variation from 2.2 to
... Show MoreCassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreThe principle of an interview requires revenues to expenditures by linking the efforts and achievements and disclosure sufficient to result activity, in the case generate future benefits of a particular asset, this asset appears in the balance sheet to reflect with the rest of the accounting unit's assets on the strength of financial position In the absence of future benefits from the effort are so loaded effort on the result accounts that reflect the outcome of activity during a specific period if the month or be separated or fiscal year.
The researcher reached the following conclusions:
1- difficult to control the cash inflows and outflows as a result of the multiplicity of sources of funding.
2- wea
... Show MoreThis paper presents an analysis of selected qualitative characteristics of pellets produced from rape straw obtained from cultivations subjected to different fertilization treatments and from mixtures of straw selected for testing with crude glycerol obtained as a by-product from biodiesel production. The assessment focused on the following qualities of the obtained pellets: Moisture content, mechanical durability, heating value and main elements, that is, carbon, hydrogen, nitrogen, sulphur, chlorine and oxygen. The obtained results indicated that the different treatment regimens applied in spring rape cultivations had a significant impact on the physicochemical qualities of the straw. In terms of the heating value, traditional fer
... Show More