Staphylococci are common commensals in human beings, yet certain species are pathogenic. Staphylococcus aureus, particularly, is a very virulent human pathogen. The capacity of staphylococci to sense the density of bacterial cell, i.e., quorum, and thereafter respond via genetic modifications is attributable to one primary mechanism known as accessory gene regulator (Agr). Agr's extracellular signal is a peptide that is posttranslationally modified with a thiolactone molecule. Agr is in charge of the upregulation of numerous exotoxins and hydrolyzing enzymes, as well as the downregulation of many colonization determinants, under circumstances of high cell density. This modulation is critical for the scheduling synthesis of virulence determinants throughout the infection course and the establishment of acute illness, whereas low Agr activity is linked to persistent staphylococcal infections, such as biofilm development. Moreover, Staphylococcal Accessory Regulator Aِ (SarA) controls the establishment of biofilm in S. aureus that hinders the production of nuclease and protease via triggering the P2 and P3 promoters resulting in the activation of RNAII and RNAIII, respectively. SarA also endures the transcription of agrA and saeS, and many virulence determinants including hla, hlb, and hlg coding α-, β-, and γ-hemolysins, respectively. Upon the aforementioned facts, the present review will shed some light on the Quorum Sensing (QS) in S. aureus, particularly, the Agr and Sar systems and how these systems control the pathogenicity of this spe
Thin films of iridium doped indium oxide (In2O3:Eu)with different doping ratio(0,3,5,7,and 9%) are prepared on glass and single crystal silicon wafer substrates using spray pyrolysis method. The goal of this research is to investigate the effect of doping ratio on of the structural, optical and sensing properties . The structure of the prepared thin films was characterized at room temperature using X-ray diffraction. The results showed that all the undoped and doped (In2O3:Eu)samples are polycrystalline in structure and nearly stoichiometric. UV-visible spectrophotometer in the wavelength range (200-1100nm)was used to determine the optical energy gap and optical constants. The optical transmittance of 83% and the optical band gap of 5.2eV
... Show MoreIn this research, non-thermal plasma system of argon gas is designed to work at normal atmospheric pressure and suitable for work in medical and biotechnological applications. This technique is applied in the treatment of the Staphylococcus epidermidis bacteria and show the role of the flow rate of Argon gas on the killing rate of bacteria, and it obtained a 100 % killing rate during the time of 5 minutes at the flow Argon gas of 5 liters/ min.
Out of Hundred clinical samples, taken from different sources include burn, blood , wound and nasal swabs infections ; 90 isolates developed growth on mannitol salt agar. Among these, 40 (44.4%) were Coagulase positive (Staphylococcus aureus) isolates and 50 (55.5%)belong to coagulase negative staphylococci, in which the last Staphylococcus epidermidis isolates were 30(60%).Antibiotic susceptibility of Staphylococcus epidermidis isolates to 12 antibiotics were determined using disc diffusion method . The results revealed that high resistance to Penecillin G10 and Amoxiclav (Amoxicillin- clavulanic acid) ( 100%) and the high sensitivity to Imipenim (95%). The pattern of minimum inhibitory concentration of S.epidermidis isolates to vancomy
... Show MoreCopper Telluride Thin films of thickness 700nm and 900nm, prepared thin films using thermal evaporation on cleaned Si substrates kept at 300K under the vacuum about (4x10-5 ) mbar. The XRD analysis and (AFM) measurements use to study structure properties. The sensitivity (S) of the fabricated sensors to NO2 and H2 was measured at room temperature. The experimental relationship between S and thickness of the sensitive film was investigated, and higher S values were recorded for thicker sensors. Results showed that the best sensitivity was attributed to the Cu2Te film of 900 nm thickness at the H2 gas.
In this research PbS thin film have been prepared by chemical bath deposition technique (CBD).The PbS film with thickness of (1-1.5)μm was thermally treated at temperature of 100°C for 4 hours. Some Structural characteristics was studied by using X-ray diffraction (XRD)and optical microscope photograph some of chemical gas sensing measurements were carried out ,it shown that the sensitivity of (CO2) gas depend on the grain Size and deposition substrate. The grain size of PbS film deposited on on glass closed to 21.4 nm while 37.97nm for Si substrate. The result of current-voltage characterization shwon the sensitivity of prepared film deposited on Si better than film on glass.
To date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip
... Show MoreThe petroleum sector has a significant influence on the development of multiphase detection sensor techniques; to separate the crude oil from water, the crude oil tank is used. In this paper, a measuring system using a simple and low cost two parallel plate capacitance sensor is designed and implemented based on a Micro controlled embedded system plus PC to automatically identify the (gas/oil) and (oil/water) dynamic multi-interface in the crude oil tank. The Permittivity differences of two-phase liquids are used to determine the interface of them by measuring the relative changes of the sensor’s capacitance when passes through the liquid’s interface. The experiment results to determine the liquid’s interface is sa
... Show More