Preferred Language
Articles
/
UhgnXJQBVTCNdQwCtxN1
Cysteine-cupped CdSe/CdS quantum dots as an opticalbiosensor for early skin cancer detection
...Show More Authors

This study represents an optical biosensor for early skin cancer detection using cysteine-cupped CdSe/CdS Quantum Dots (QDs). The study optimizes QD synthesis, surface, optical functionalization, and bioconjugation to enhance specificity and sensitivity for early skin cancer cell detection. The research provides insights into QD interactions with skin cancer biomarkers, demonstrating high-contrast, precise cellular imaging. Cysteine-capped CdSe/CdS absorption spectra reveal characteristic peaks for undamaged DNA, while spectral shifts indicate structural changes in skin-cancer-damaged DNA. Additionally, fluorescence spectra show sharp peaks for undamaged DNA and notable shifts and intensity variations when interacting with skin cancer. This change in the optical properties of the deformed DNA is considered a tool for early detection of skin cancer. ELISA test results showed that the best incubation period for recording absorbance intensity with a spectrophotometer is 24 h.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Mar 26 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Detection and isolation of flavonoids from Calendula officinalis (F.Asteraceae) cultivated in Iraq
...Show More Authors

Calendula officinalis L. (Asteraceae) known as marigold is known to have several pharmacological activities and used for the treatment of several diseases as measles, jaundice, constipation and several inflammations. Marigold flowers contain several chemical constituents mainly flavonoids, triterpenoids and essential oil. In this study marigold flowers cultivated in Iraq had been investigated for its flavonoids content. The study revealed the presence of quercetin and kaempferol glycosides and the absence of myricetin glycosides. The flowers were extracted with ethanol 70% fractionated with different solvent and the flavonoids were isolated by preparative HPLC. The isolated flavonoids were identified by measuring melting points, UV, IR,

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Apr 01 2025
Journal Name
Mesopotamian Journal Of Cybersecurity
The Impact of Feature Importance on Spoofing Attack Detection in IoT Environment
...Show More Authors

The Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tr

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Detection and interpretation of clouds types using visible and infrared satellite images
...Show More Authors

One of the most Interesting natural phenomena is clouds that have a very strong effect on the climate, weather and the earth's energy balance. Also clouds consider the key regulator for the average temperature of the plant. In this research monitoring and studying the cloud cover to know the clouds types and whether they are rainy or not rainy using visible and infrared satellite images. In order to interpret and know the types of the clouds visually without using any techniques, by comparing between the brightness and the shape of clouds in the same area for both the visible and infrared satellite images, where the differences in the contrasts of visible image are the albedo differences, while in the infrared images is the temperature d

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Detection of Bacteria Causing Burn Infection Isolated from Several Hospitals in Baghdad
...Show More Authors

The results of the present study showed that twenty-five samples were collected for the age group 35–40 years and four samples for the age group 65–70 years for both genders. The results showed that 48 (48%) of the samples were obtained from the hands, 16 (16%) from the legs, 12 (12%) from the abdominal area, and 10 (10%) from the chest area. The four (4%) samples were obtained from burns in the back and thighs area. The samples taken according to the cause of burns were 40 (40%) due to hot water, hot liquids, or hot steam, followed by 18 (18%) due to the use of hot tools, 15 (15%) due to fires, 12 (12%) due to electric currents, 10 (10%) due to chemicals such as strong acids, alkaline lye, paint thinner, or gasoline, and 5 (5%) due

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Apr 30 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
SMS Spam Detection Based on Fuzzy Rules and Binary Particle Swarm Optimization
...Show More Authors

View Publication
Scopus (10)
Crossref (5)
Scopus Crossref
Publication Date
Wed Jul 10 2024
Journal Name
The Open Neuroimaging Journal
The Efficacy of Bedside Chest Ultrasound in the Detection of Traumatic Pneumothorax
...Show More Authors
Background

Chest X-rays have long been used to diagnose pneumothorax. In trauma patients, chest ultrasonography combined with chest CT may be a safer, faster, and more accurate approach. This could lead to better and quicker management of traumatic pneumothorax, as well as enhanced patient safety and clinical results.

Aim

The purpose of this study was to assess the efficacy and utility of bedside US chest in identifying traumatic pneumothorax and also its capacity to estimate the extent of the lesion in comparison to the gold standard modality chest computed tomography.

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Fast Shot Boundary Detection Based on Separable Moments and Support Vector Machine
...Show More Authors

View Publication
Scopus (23)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (18)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (17)
Scopus Crossref