Preferred Language
Articles
/
UhfwN48BVTCNdQwCGWPE
A Genetic Algorithm for Task Allocation Problem in the Internet of Things
...Show More Authors

In the last few years, the Internet of Things (IoT) is gaining remarkable attention in both academic and industrial worlds. The main goal of the IoT is laying on describing everyday objects with different capabilities in an interconnected fashion to the Internet to share resources and to carry out the assigned tasks. Most of the IoT objects are heterogeneous in terms of the amount of energy, processing ability, memory storage, etc. However, one of the most important challenges facing the IoT networks is the energy-efficient task allocation. An efficient task allocation protocol in the IoT network should ensure the fair and efficient distribution of resources for all objects to collaborate dynamically with limited energy. The canonical definition for network lifetime in the IoT is to increase the period of cooperation between objects to carry out all the assigned tasks. The main contribution in this paper is to address the problem of task allocation in the IoT as an optimization problem with a lifetime-aware model. A genetic algorithm is proposed as a task allocation protocol. For the proposed algorithm, a problem-tailored individual representation and a modified uniform crossover are designed. Further, the individual initialization and perturbation operators (crossover and mutation) are designed so as to remedy the infeasibility of any solution located or reached by the proposed genetic algorithm. The results showed reasonable performance for the proposed genetic-based task allocation protocol. Further, the results prove the necessity for designing problem-specific operators instead of adopting the canonical counterparts.

Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Optimizing Blockchain Consensus: Incorporating Trust Value in the Practical Byzantine Fault Tolerance Algorithm with Boneh-Lynn-Shacham Aggregate Signature
...Show More Authors

The consensus algorithm is the core mechanism of blockchain and is used to ensure data consistency among blockchain nodes. The PBFT consensus algorithm is widely used in alliance chains because it is resistant to Byzantine errors. However, the present PBFT (Practical Byzantine Fault Tolerance) still has issues with master node selection that is random and complicated communication. The IBFT consensus technique, which is enhanced, is proposed in this study and is based on node trust value and BLS (Boneh-Lynn-Shacham) aggregate signature. In IBFT, multi-level indicators are used to calculate the trust value of each node, and some nodes are selected to take part in network consensus as a result of this calculation. The master node is chosen

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Mar 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Multidimensional Systolic Arrays of LMS Algorithm Adaptive (FIR) Digital Filters
...Show More Authors

A multidimensional systolic arrays realization of LMS algorithm by a method of mapping regular algorithm onto processor array, are designed. They are based on appropriately selected 1-D systolic array filter that depends on the inner product sum systolic implementation. Various arrays may be derived that exhibit a regular arrangement of the cells (processors) and local interconnection pattern, which are important for VLSI implementation. It reduces latency time and increases the throughput rate in comparison to classical 1-D systolic arrays. The 3-D multilayered array consists of 2-D layers, which are connected with each other only by edges. Such arrays for LMS-based adaptive (FIR) filter may be opposed the fundamental requirements of fa

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 28 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Development prediction algorithm of vehicle travel time based traffic data
...Show More Authors

This work bases on encouraging a generous and conceivable estimation for modified an algorithm for vehicle travel times on a highway from the eliminated traffic information using set aside camera image groupings. The strategy for the assessment of vehicle travel times relies upon the distinctive verification of traffic state. The particular vehicle velocities are gotten from acknowledged vehicle positions in two persistent images by working out the distance covered all through elapsed past time doing mollification between the removed traffic flow data and cultivating a plan to unequivocally predict vehicle travel times. Erbil road data base is used to recognize road locales around road segments which are projected into the commended camera

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Selection of variables Affecting Red Blood Cell by Firefly Algorithm
...Show More Authors

Some maps of the chaotic firefly algorithm were selected to select variables for data on blood diseases and blood vessels obtained from Nasiriyah General Hospital where the data were tested and tracking the distribution of Gamma and it was concluded that a Chebyshevmap method is more efficient than a Sinusoidal map method through mean square error criterion.

View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Mathematics
Face Recognition Algorithm Based on Fast Computation of Orthogonal Moments
...Show More Authors

Face recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima

... Show More
View Publication
Scopus (33)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Ain Shams Engineering Journal
Performance enhancement of high degree Charlier polynomials using multithreaded algorithm
...Show More Authors

View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2016
Journal Name
2016 38th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Changes in the EEG amplitude as a biomarker for early detection of Alzheimer's disease
...Show More Authors

The rapid increase in the number of older people with Alzheimer's disease (AD) and other forms of dementia represents one of the major challenges to the health and social care systems. Early detection of AD makes it possible for patients to access appropriate services and to benefit from new treatments and therapies, as and when they become available. The onset of AD starts many years before the clinical symptoms become clear. A biomarker that can measure the brain changes in this period would be useful for early diagnosis of AD. Potentially, the electroencephalogram (EEG) can play a valuable role in early detection of AD. Damage in the brain due to AD leads to changes in the information processing activity of the brain and the EEG which ca

... Show More
View Publication
Scopus (23)
Crossref (13)
Scopus Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Optimum Median Filter Based on Crow Optimization Algorithm
...Show More Authors

          A novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the resul

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2002
Journal Name
Iraqi Journal Of Physics
An edge detection algorithm matching visual contour perception
...Show More Authors

For several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.

View Publication Preview PDF
Publication Date
Sat Oct 19 2024
Journal Name
Iraqi Statisticians Journal
Forecasting Gold prices by hybrid ANFIS-based algorithm
...Show More Authors

In this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid foreca

... Show More
View Publication
Crossref