Preferred Language
Articles
/
Uheuoo4BVTCNdQwC51b6
The Prospective of Artificial Neural Network (ANN’s) Model Application to Ameliorate Management of Post Disaster Engineering Projects
...Show More Authors

Currently and under the COVID-19 which is considered as a kind of disaster or even any other natural or manmade disasters, this study was confirmed to be important especially when the society is proceeding to recover and reduce the risks of as possible as injuries. These disasters are leading somehow to paralyze the activities of society as what happened in the period of COVID-19, therefore, more efforts were to be focused for the management of disasters in different ways to reduce their risks such as working from distance or planning solutions digitally and send them to the source of control and hence how most countries overcame this stage of disaster (COVID-19) and collapse. Artificial intelligence should be used when there is no practical solution for a problem occurring in a projects starting from individual self-development ending to the adaptation to information technology sector with a continuous posting in this world of information industry where as metaphor “needs is a cause of creativity”. This study focuses on the use of artificial neural networks ANN to find a solution to issues in projects delays and furthermore when there is no physical or mathematical solution found so far. ANN’s were used to build a model that helps in finding a solution for delays in some selected projects in Baghdad (as case study), and discussing the strategies of rebuilding plus delays in time and cost due to delay factors. 35 construction projects were chosen in Baghdad greater area, vary in sizes and types. Crew and laborers were targeted in sampling collection methodology basically throughout questionnaire forms of field survey as they were filled by them. ANN’s helped in modelling delays factors to help decision makers in an appropriate management of projects. External factors which includes disasters mentioning COVID-19 as the most important disaster ever happened in the last decades, were the most important factor that caused delay in time and cost of projects implementation processes where this factor was controlling the other major factors such as contractor failure, redesigning, changing orders, security issues, low prices, besides weather issues and owner failure.

Crossref
View Publication
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Application the generalized estimating equation Method (GEE) to estimate of conditional logistic regression model for repeated measurements
...Show More Authors

Conditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 22 2018
Journal Name
Journal Of Economics And Administrative Sciences
Using Mehar method to change fuzzy cost of fuzzy linear model with practical application
...Show More Authors

  Many production companies suffers from big losses because of  high production cost and low profits for several reasons, including raw materials high prices and no taxes impose on imported goods also consumer protection law deactivation and national product and customs law, so most of consumers buy imported goods because it is characterized by modern specifications and low prices.

  The production company also suffers from uncertainty in the cost, volume of production, sales, and availability of raw materials and workers number because they vary according to the seasons of the year.

  I had adopted in this research fuzzy linear program model with fuzzy figures

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
N – Topological Space and Its Applications in Artificial Neural Networks
...Show More Authors

   In this paper we give definitions, properties and examples of the notion of  type Ntopological space. Throughout this paper  N is a finite positive  number, N 2. The task of this paper is to study and investigate some properties of such spaces with the existence of a relation between this space and artificial Neural Networks (NN'S), that is we applied the definition of this space in computer field and specially in parallel processing

View Publication Preview PDF
Publication Date
Sun Sep 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
The role of competitive intelligence and reverse engineering to achieve competitive advantage
...Show More Authors

Abstract

In light of the great technological development and the emergence of globalization has increased global competition, where it became competitive exercise pressure on all sectors. In light of this companies mast enviorment depend on the means that keeps them on the competitive position through access to information about competitors in order to help them to draw a strategy that will achieve a competitive edge either through excellence or reduce the costs of their products and this means intelligence competitive and reverse engineering that help to gain information on competitors analyze and put of the decision-maker From this point formed the idea of ​​research in the statement of the role of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Spe Europec Featured At 81st Eage Conference And Exhibition
Development of Artificial Neural Networks and Multiple Regression Analysis for Estimating of Formation Permeability
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Complexity
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay

... Show More
View Publication
Scopus (17)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Mon Feb 13 2023
Journal Name
International Conference Of Computational Methods In Sciences And Engineering Iccmse 2021
Management of the flood disaster and assessment their damaged areas using remote sensing and GIS techniques: A case study of Tigris River – Maysan Governorate, Iraq
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Thu Apr 17 2025
Journal Name
Journal Of Business Economics For Applied Research
The impact of total quality management on the quality engineering of Diyala State Company's products and production processes
...Show More Authors

View Publication
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Petroleum Research And Studies
Modeling of Oil Viscosity for Southern Iraqi Reservoirs using Neural Network Method
...Show More Authors

The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu

... Show More
View Publication
Crossref
Publication Date
Mon Sep 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Optimal Design of Cylinderical Ectrode Using Neural Network Modeling for Electrochemical Finishing
...Show More Authors

The finishing operation of the electrochemical finishing technology (ECF) for tube of steel was investigated In this study. Experimental procedures included qualitative
and quantitative analyses for surface roughness and material removal. Qualitative analyses utilized finishing optimization of a specific specimen in various design and operating conditions; value of gap from 0.2 to 10mm, flow rate of electrolytes from 5 to 15liter/min, finishing time from 1 to 4min and the applied voltage from 6 to 12v, to find out the value of surface roughness and material removal at each electrochemical state. From the measured material removal for each process state was used to verify the relationship with finishing time of work piece. Electrochemi

... Show More
View Publication Preview PDF