Preferred Language
Articles
/
Uhe7l5MBVTCNdQwCTdbp
An Artificial Neural Network Prediction Model of GFRP Residual Tensile Strength
...Show More Authors

This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperature exerted the most significant influence at 100%, while sample dimensions had a minimal impact at 17.9%. In addition, the mathematical model closest to the proposed was the Bazli model, because the latter depends on two variables (thickness and temperature). The ANN accurately predicted the residual tensile strength of GFRP at elevated temperatures, achieving a correlation coefficient of 97.3% and a determination coefficient of 94.3%.

Scopus Crossref
View Publication
Publication Date
Mon May 27 2019
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Process Parameters That Affecting on Surface Roughness in Multi-Point Forming Process Using ANOVA Algorithm
...Show More Authors

 

Multipoint forming process is an engineering concept which means that the working surface of the punch and die is produced as hemispherical ends of individual active elements (called pins), where each pin can be independently, vertically displaced using a geometrically reconfigurable die. Several different products can be made without changing tools saved precious production time. Also, the manufacturing of very expensive rigid dies is reduced, and a lot of expenses are saved. But the most important aspects of using such types of equipment are the flexibility of the tooling. This paper presents an experimental investigation of the effect of three main parameters which are blank holder, rubber thickness and forming speed th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 04 2012
Journal Name
University Of Thi-qar Journal
Prediction of Ultimate Soil Bearing Capacity for Shallow Strip Foundation on Sandy Soils by Using (ANN) Techniqu
...Show More Authors

Bearing capacity of soil is an important factor in designing shallow foundations. It is directly related to foundation dimensions and consequently its performance. The calculations for obtaining the bearing capacity of a soil needs many varying parameters, for example soil type, depth of foundation, unit weight of soil, etc. which makes these calculation very variable–parameter dependent. This paper presents the results of comparison between the theoretical equation stated by Terzaghi and the Artificial Neural Networks (ANN) technique to estimate the ultimate bearing capacity of the strip shallow footing on sandy soils. The results show a very good agreement between the theoretical solution and the ANN technique. Results revealed that us

... Show More
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization and Prediction of Process Parameters in SPIF that Affecting on Surface Quality Using Simulated Annealing Algorithm
...Show More Authors

Incremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms by this way the sheet with pure deformation stretching. In SPIF process, the research is concentrate on the development of predict models for estimate the product quality. Using simulated annealing algorithm (SAA), Surface quality in SPIF has been modeled. In the development of this predictive model, spindle speed, feed rate and step depth have been considered as model parameters. Maximum peak height (Rz) and Arithmetic mean surface roughness (Ra) are used as response parameter to assess th

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Hydraulic Flow Units for Jeribe Reservoir in Jambour Oil Field Applying Flow Zone Indicator Method
...Show More Authors

The Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units.

   This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized por

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Hydraulic Flow Units for Jeribe Reservoir in Jambour Oil Field Applying Flow Zone Indicator Method
...Show More Authors

The Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units.    This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized poros

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Mon Aug 18 2025
Journal Name
Soil And Sediment Contamination: An International Journal
Remediation Prediction of Contaminated Soil with Crude Oil Using the Optimized Remediation Method for the Iraqi Environment
...Show More Authors

Large quantities of petroleum-contaminated soil are generated with increased global energy consumption and crude oil production. This theoretical study evaluates the treatment of 1 ton of petroleum-contaminated soil using seven methods: incineration, physical washing, chemical washing, thermal pyrolysis, Fenton-oxidation-pyrolysis, the biological treatment, and asphaltenes. Data were based on experimental results from the Nahran Bin Omar oil lake in Basra Governorate, Iraq, (2019–2021). The methods were compared by waste generation, treatment cost, and duration. Results indicate that using petroleum-contaminated soil as a raw material for asphalt manufacturing is most beneficial since it is sold as a raw material. Incineration is faster a

... Show More
View Publication
Scopus Crossref
Publication Date
Fri Aug 13 2021
Journal Name
Neural Computing And Applications
Integration of extreme gradient boosting feature selection approach with machine learning models: application of weather relative humidity prediction
...Show More Authors

View Publication
Scopus (70)
Crossref (59)
Scopus Clarivate Crossref
Publication Date
Wed Dec 27 2017
Journal Name
Al-khwarizmi Engineering Journal
Human Face Recognition Using GABOR Filter And Different Self Organizing Maps Neural Networks
...Show More Authors

 

This work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.

The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 19 2025
Journal Name
Lecture Notes In Networks And Systems
Utilizing Artificial Intelligence Tools in Enhancing Training of Trainers (ToT) Programs: Modern Approaches and Practical Applications
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Mar 01 2009
Journal Name
Al-khwarizmi Engineering Journal
A Proposed Artificial Intelligence Algorithm for Assessing of Risk Priority for Medical Equipment in Iraqi Hospital
...Show More Authors

This paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model gives fast and accurate assessment for risk priority and it works as p

... Show More
View Publication Preview PDF