This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperature exerted the most significant influence at 100%, while sample dimensions had a minimal impact at 17.9%. In addition, the mathematical model closest to the proposed was the Bazli model, because the latter depends on two variables (thickness and temperature). The ANN accurately predicted the residual tensile strength of GFRP at elevated temperatures, achieving a correlation coefficient of 97.3% and a determination coefficient of 94.3%.
The aim of the research is to measure the length between the variable the efficiency of the tax examiner with its dimensions represented by (scientific questions, practical process (experience), training and development, impartiality and independence, ethics of the profession) and the approved variable discovering the artificial adaptation of profits, and the degree of arrangement of those dimensions its importance and priority, and the research problem has been identified In a main question that is there any effect of copying the images of the image examiner in discovering the adaptation, the financial statements and reports of the companies (X, Y) and the banks (A, B) were relied on in the interpretation of the results, t
... Show MoreThis paper compare the accurecy of HF propagation prediction programs for HF circuits links between Iraq and different points world wide during August 2018 when solar cycle 24 (start 2009 end 2020) is at minimun activity and also find out the best communication mode used. The prediction programs like Voice of America Coverage Analysis Program (VOACAP) and ITU Recommendation RS 533 (REC533 ) had been used to generat HF circuit link parameters like Maximum Usable Frequency ( MUF) and Frequency of Transsmision (FOT) .Depending on the predicted parameters (data) , real radio contacts had been done using a radio transceiver from Icom model IC 7100 with 100W RF
... Show MoreWireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffi
... Show MoreThis research aims to predict new COVID-19 cases in Bandung, Indonesia. The system implemented two types of deep learning methods to predict this. They were the recurrent neural networks (RNN) and long-short-term memory (LSTM) algorithms. The data used in this study were the numbers of confirmed COVID-19 cases in Bandung from March 2020 to December 2020. Pre-processing of the data was carried out, namely data splitting and scaling, to get optimal results. During model training, the hyperparameter tuning stage was carried out on the sequence length and the number of layers. The results showed that RNN gave a better performance. The test used the RMSE, MAE, and R2 evaluation methods, with the best numbers being 0.66975075, 0.470
... Show MoreThis paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performan
... Show MoreBackground: The bond strength of the root canal sealers to dentin is very important property for maintaining the integrity and the seal of root canal filling. The aim of this study was to evaluate and compare the push-out bond strength of root filled with total fill Bioceramic, AH Plus and Gutta-flow®2 sealers using GuttaFusion®obturation system versus single cone obturation technique. Materials and method: sixty of mandibular premolars teeth with straight roots were used in this study, these roots were instrumented using Reciproc system, instrumentation were done with copious irrigation of 3 mL 5.25% sodium hypochlorite solution (NaOCl) during all the steps of preparation, and smear layer will be removed with 1 ml of 17% EDTA kept in
... Show MoreBack ground: This in vitro study was carried out to investigate the effect of post space regions (coronal, middle and apical), Time and the mode of polymerization (dual, self-cured) of the cements used on the bond strength between translucent fiber post and root dentin by using push-out test. Materials and Methods: Forty eight extracted mandibular first premolars (single root) were instrumented with ProTaper Universal system files (for hand use) and obturated with gutta percha for ProTaper and AH26® root canal sealer following the manufacturer instructions, after 24 hours post space was prepared using FRC postec® plus drills no.3 creating 8 mm depth post space. The prepared samples were randomly divided into two main groups (24 samples ea
... Show More