Researchers are increasingly using multimodal biometrics to strengthen the security of biometric applications. In this study, a strong multimodal human identification model was developed to address the growing problem of spoofing attacks in biometric security systems. Through the use of metaheuristic optimization methods, such as the Genetic Algorithm(GA), Ant Colony Optimization(ACO), and Particle Swarm Optimization (PSO) for feature selection, this unique model incorporates three biometric modalities: face, iris, and fingerprint. Image pre-processing, feature extraction, critical image feature selection, and multibiometric recognition are the four main steps in the workflow of the system. To determine its performance, the model was evaluated on the SDUMLA-HMT dataset, which contains a variety of biometric features from various individuals. The system outperformed existing techniques in the literature with an excellent recognition accuracy of 99.4%. Although this result is encouraging, further research on larger and more varied datasets is necessary to confirm its applicability across many circumstances. This study highlights how multimodal biometrics strengthened by metaheuristic algorithms can considerably increase biometric security against spoofing assaults, thereby opening a promising new direction for future development in the field.
Fabrication of solar cell prepared by thermal spray and vacuum thermal evaporation method on silicon wafer(n-type) and studying its efficiency. The film have been deposited on three layers(ZnO then CdS and CdTe) on Si and glass respectively.Direct energy gap was calculated and equal to (4.3,3.4,3)eV and indirect energy gap equal to (3.5,2.5,1.5)eV respectively . Efficiency was calculated for the cell of area 2cm2 it was equal to 0.14%.
This paper discusses the limitation of both Sequence Covering Array (SCA) and Covering Array (CA) for testing reactive system when the order of parameter-values is sensitive. In doing so, this paper proposes a new model to take the sequence values into consideration. Accordingly, by superimposing the CA onto SCA yields another type of combinatorial test suite termed Multi-Valued Sequence Covering Array (MVSCA) in a more generalized form. This superimposing is a challenging process due to NP-Hardness for both SCA and CA. Motivated by such a challenge, this paper presents the MVSCA with a working illustrative example to show the similarities and differences among combinatorial testing methods. Consequently, the MVSCA is a
... Show MoreFacial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) f
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
The dependable and efficient identification of Qin seal script characters is pivotal in the discovery, preservation, and inheritance of the distinctive cultural values embodied by these artifacts. This paper uses image histograms of oriented gradients (HOG) features and an SVM model to discuss a character recognition model for identifying partial and blurred Qin seal script characters. The model achieves accurate recognition on a small, imbalanced dataset. Firstly, a dataset of Qin seal script image samples is established, and Gaussian filtering is employed to remove image noise. Subsequently, the gamma transformation algorithm adjusts the image brightness and enhances the contrast between font structures and image backgrounds. After a s
... Show MoreFace recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima
... Show More