This study investigates the characterization and growth dynamics of a Magnetically Stabilized Gliding Arc Discharge (MSGAD) system, generating non-thermal plasma with argon gas under atmospheric pressure and flow rates of 1-5 L/min. The electrical properties and growth patterns concerning gas flow rates and applied voltages were examined utilizing a magnetic field for stability. Using a digital oscilloscope, a correlation between voltage reduction and increased current was uncovered. An algorithm analyzes digital images to compute arc length, area, and volume. Results reveal how gas flow rate and applied voltage directly impact arc growth. Furthermore, the magnetic field's role in guiding and stabilizing the plasma discharge was explored. This research elucidates the interplay between electrical behavior and geometric characteristics in MSGAD, offering insights into potential applications. © ALL RIGHTS RESERVED.
The parasite E.histolytica was first isolated from a stool sample, and then cultivated and maintained in vitro using Locke-egg medium (LEM) and Liver infusion agar medium (LIAM) . Then, the effect of some types of erythrocytes (human and sheep), on the growth and activity of the parasite in the two culture media was investigated. The parasite was able to ingest and lysis erythrocytes of human and sheep that were supplemented to the culture media and such manipulation was able to augment the reproduction rate of the cultivated E. histolytica, however, such consequence was media- and concentration-dependent. The reproduction rate was significantly increased (66.0, 57.5 and 58.6%, respectively) in LEM medium containing human erythrocytes ty
... Show MoreIn this work, a magnetic switch was prepared using two typesof ferrofluid materials, the pure ferrofluid and ferrofluid doped with copper nanoparticles (10 nm). The critical magnetic field (Hc) and the state of magnetic saturation (Hs) were studied using three types of laser sources. The main parameters of the magnetic switch measured using pure ferrofluid and He-Ne Laser source were Hc(0.5 mv, 0.4 G), Hs (8.5 mv, 3 G). For the ferrofluid doped with copper nanoparticles were Hc (1 mv, 4 G), Hs (15 mv, 9.6 G), Using green semiconductor laser for the Pure ferrofluid were Hc (0.5 mv, 0.3 G) Hs (15 mv, 2.9 G). While the ferrofluid doped with copper nanoparticles were Hc (0.5 mv, 1 G), Hs (12 mv, 2.8 G) and by using the violet semiconductor l
... Show Morein the present article, we present the peristaltic motion of “Hyperbolic Tangent nanofluid” by a porous area in a two dimensional non-regular a symmetric channel with an inclination under the impact of inclination angle under the impact of inclined magnetic force, the convection conditions of “heat and mass transfer” will be showed. The matter of the paper will be further simplified with the assumptions of long wave length and less “Reynolds number”. we are solved the coupled non-linear equations by using technical analysis of “Regular perturbation method” of series solutions. We are worked out the basic equations of continuity, motion, temperature, and volume fraction
Clinical index is needed to predict the outcome of pregnancy after in vitro fertilization/intracytoplasmic sperm injection-embryo transfer (IVF/ICSI-ET) for infertile patients. Growth differentiation factor-8 (GDF-8), also known as myostatin, is one of transforming growth factor-â superfamily localized in antral follicles in normal and PCOS ovaries but its function in female reproductive system is still unknown. Aim of the study is to assess the correlation between levels of GDF8 in follicular fluid (FF) with outcomes of in vitro fertilization (IVF/ICSI) in women with and without PCOS. A prospective case control study was performed enrolling (40) patients with PCOS and (40) non-PCOS women (male infertility) undergoing IVF/ICSI. The collect
... Show MoreSpray pyrolysis technique (SPT) is employed to synthesize cadmium oxide nanostructure with 3% and 5% Cobalt concentrations. Films are deposited on a glass substrate at 350 ᵒC with 150 nm thickness. The XRD analysis revealed a polycrystalline nature with cubic structure and (111) preferred orientation. Structural parameters represent lattice spacing, crystallite size, lattice parameter and dislocation density. Homogeneous surfaces and regular distribution of atoms were showed by atomic force microscope (AFM) with 1.03 nm average roughness and 1.22 nm root mean square roughness. Optical properties illustrated a high transmittance more than 85% in the range of visible spectrum and decreased with Co concentration increasing. The absorption
... Show MoreThis study was conducted to evaluate the efficacy of Saccharomyces cerevesiae as a growth promoting agent in tomato. Soaking the seeds in yeast suspension at 5 g/L for 12h increased germination percentage, root length, root fresh and dry weight, plant height, foliage fresh and dry weight, attained 88.5% ; 8.1 cm ; 84.3 mg ; 7.03 mg ; 10.75 cm ; 839 mg and 37.75 mg compared with 80% ; 5.33 cm ; 39 mg ; 4.8 mg ; 7.35 cm ; 608 mg and 25.5 mg in seedlings grown from non treated seeds respectively. Similar results were obtained with seedling from seeds soaked in S. cerevesiae filtrate for 12 hrs. with values of 77.5% ; 6.875 cm ; 91.5 mg ; 7.5 mg ; 9.5 cm ; 777 mg and 40.35 mg compared to 66% ; 5.8 cm ; 57.7 mg ; 5.03 mg ; 5.9 cm ; 493 mg
... Show MoreThe calculation of the charge on an isolated dust grain immersed in plasma with different grain sizes is a challenging one, especially under moderately high plasma temperature when secondary electron emission significant. The discrete charging model is used to calculate the charges of dust grain in dusty plasma. In this model, we included the effect of grain size dependence on secondary electron emission. The results show that the secondary electron emission from the glass dust grains due to energetic electron (40eV) can lead to the small grain to be slightly more positive than the large grain. Under these conditions, the smaller and larger grains would be attracted rather than repelled, which possibly lead to enhanced coagulation rates.
... Show MoreRG Majeed, AS Ahmed, Jornal of Al-Muthanna for Agricultural Sciences, 2023
Foliar application and seed soaking has been used as a means of supplying supplemental doses of nutrients, plant hormones, stimulants, and organic components. the effects of these applications have included yield increases, and improved drought tolerance, and enhanced crop quality, so A field experiment was carried out during spring seasons in 2019 and 2020 for styding Seed soaking and Foliar Application of Ascorbic acid, Citric acid and Humic acid on Growth, Yield and Active Components IN Maize. Randomized complete block design in split plots arrangement was used with three replicates. Main-plots were for seeds soaking with ascorbic, citric (100 mg l-1) frequently and humic at (1 ml l-1). Sub-plots were for vegetative parts nutrition with
... Show MorePositron annihilation lifetime (PAL) technique has been employed to
study the microstructural changes of polyurethane (PU), EUXIT 101
and epoxy risen (EP), EUXIT 60 by Gamma-ray irradiation with the
dose range (95.76 - 957.6) kGy. The size of the free volume hole and
their fraction in PU and EP were determined from ortho-positronium
lifetime component and its intensity in the measured lifetime spectra.
The results show that the irradiation causes significant changes in the
free volume hole size (Vh) and the fractional free volume (Fh), and
thereby the microstructure of PU and EP. The results indicate that
the γ-dose increases the crystallinity in the amorphous regions of PU
and increas