This study investigates the characterization and growth dynamics of a Magnetically Stabilized Gliding Arc Discharge (MSGAD) system, generating non-thermal plasma with argon gas under atmospheric pressure and flow rates of 1-5 L/min. The electrical properties and growth patterns concerning gas flow rates and applied voltages were examined utilizing a magnetic field for stability. Using a digital oscilloscope, a correlation between voltage reduction and increased current was uncovered. An algorithm analyzes digital images to compute arc length, area, and volume. Results reveal how gas flow rate and applied voltage directly impact arc growth. Furthermore, the magnetic field's role in guiding and stabilizing the plasma discharge was explored. This research elucidates the interplay between electrical behavior and geometric characteristics in MSGAD, offering insights into potential applications. © ALL RIGHTS RESERVED.
The characteristics of atmospheric-pressure glow discharge (APGD) produced by rod-plate electrodes are experimentally determined. APGD is sustained by applying a high DC voltage between the electrodes. At atmospheric pressure, the shift from corona discharge to glow discharge is investigated. A rod-plate discharges configuration's volt–ampere properties show the existence of three discharge regimes: corona, glow, and spark. The variations in the electrical field distribution in the various regimes are mirrored in the discharge luminosity. The rod-plate patterns are created under a dark region, and are visible mainly due to the effect of electrons heated by the local enhanced electric field at the interface, according to the op
... Show MoreIn this present paper, an experimental study of some plasma characteristics in dielectric barrier discharge (DBD) system using several variables, such as different frequencies and using two different electrodes metals(aluminium (Al) and copper (Cu)), is represented. The discharge plasma was produced by an AC power supply source of 6 and 7 kHz frequencies for the nitrogen gas spectrum and for two different electrodes metals(Al and Cu). Optical emission spectrometer was used to study plasma properties (such as electron temperature ( ), electron number density ( ), Debye length ( ), and plasma frequency ( )). In addition, images were analysed for the plasma emission intensity at atmospheric air pressure.
In this paper, a numerical analysis was carried out using finite element method to analyse the mechanisms for streamer discharges. The hydrodynamic model was used with three charge carriers equations (positive ion, negative ion and electron) coupled with Poisson equation to simulate the dynamic of streamer discharge formation and propagation. The model was tested within a 2D axisymmetric tip-plate electrodes configuration using the transformer oil as the dielectric liquid. The distance between the electrodes was fixed at 1 mm and the applied voltage was 130 kV at 46 ns rising time. Simulation results showed that the time has a clear effect on the streamer propagation along the symmetry axis. In addition, it was observed that t
... Show MoreIn this present paper , a special model was built to govern the equations of two dimensional peristaltic transport to nanofluid flow of a heat source in a tapered considered in an asymmetric channel. The equations of dimensionless temperature concentration are analytical solve under assumption slow Reynolds number and long wave length. Furthermore, the results that receive by expressing the maximum pressure rise communicates increased in case of non-Newtonian fluid when equated with Newtonian fluid. Finally, MATHEMATICA 11 program has been used to solve such system after obtaining the initial conditions. Most of the results of drawing for many are obtained via above program .
A study of the effects of the discharge (sputtering) currents (60-75 mA) and the thickness of copper target (0.037, 0.055 and 0.085 mm) on the prepared samples was performed. These samples were deposited with pure copper on a glass substrate using dc magnetron sputtering with a magnetic flux density of 150 gauss at the center. The effects of these two parameters were studied on the height, diameter, and size of the deposition copper grains as well as the roughness of surface samples using atomic force microscopy (AFM).The results of this study showed that it is possible to control the specifications of copper grains by changing the discharge currents and the thickness of the target material. The increase in discharge curre
... Show MoreInsects have a vital role in solid waste composting process. Insects are detritus feeders that enhance changing the physical and chemical properties of decomposed materials during composting processes. This behavior makes insects excellent organisms in recycling of organic matter. The present study assesses the success of insects’ population in relation with the degradation of solid waste. The study was carried out in the glass house facility of the College of Science, Salahaddin University in Erbil City, Kurdistan region of Iraq, using household organic waste. During composting process, three stages of lifecycle of insects were observed and recorded. The total number of insects reached to 1268 indiv
... Show MoreIn this article, the effects of the O2 ratio on the electrical characteristics, including the I-V characteristic curve, Panchen’s curve, and I-P curve, were tested in a sample of O2/Ar gaseous mixture . The sample was produced by plasma-based DC magnetron sputtering with niobium metal as a target material. The inter-electrode spacing value was 4 cm. Plasma diagnosis via the Optical Emission Spectroscopy (OES) method was used to achieve Te and Ne mixture values of 20 %, 30 %, 50%, and 70% in the Ar/O2 system. The results showed that the discharge is operating in the abnormal glow region and the discharge current was decreased by increasing O2 percentage. In addition, the experimenta
... Show MoreCeramics type Yttrium oxide with Silicon carbide. were selected to investigate its sintered density, microstructure and electrical properties, after adding V2O5, of 100 nm grain size. Different weight percentages ranging from (0.01,0.02,0.03 and 0.04) were used. Dry milling applied for twelve hours. The pelletized samples were sintered at atmospheric of static air and at sintering temperature 1400 ˚C, for three hours. The crustal structure test shoes the phase which is yttrium silicon carbide Scanning electron microscopy, scan sintered microstructure. Samples after sintering were electrically investigated by measuring its capacitance, dielectric constant and their results showed increasing after added V2O5 particles at the combinat
... Show MoreIn this work, As60Cu40-xSex thin films were synthesized, and the pulsed laser deposition method was used to study the effected partial replacement of copper with selenium. The electrical characteristics and optical characteristics, as indicated by the absorbance and transmittance as a function of wavelength were calculated. Additionally, the energy gap was computed. The electrical conductivity of the DC in the various conduction zones was calculated by measuring the current and voltage as a function of temperature. Additionally, the mathematical equations are used to compute the energy constants, electron hopping distance, tail width, pre-exponential factor, and density of the energy states in variation zones (densities of the energ
... Show More