The interplay of predation, competition between species and harvesting is one of the most critical aspects of the environment. This paper involves exploring the dynamics of four species' interactions. The system includes two competitive prey and two predators; the first prey is preyed on by the first predator, with the former representing an additional food source for the latter. While the second prey is not exposed to predation but rather is exposed to the harvest. The existence of possible equilibria is found. Conditions of local and global stability for the equilibria are derived. To corroborate our findings, we constructed time series to illustrate the existence and the stability of equilibria numerically by varying the different values of the system's parameters. The results show that system movement could happen around the positive equilibria, if the system stability conditions are met.
Dyspepsia is a significant public health issue that affects the entire world population. In this work, we formulate and analyze a deterministic model for the population dynamics of Gut bacteria in the presence of antibiotics and Probiotic supplements. All the possible equilibria and their local stability are obtained. The global stability around the positive equilibrium point is established. Numerical simulations back up our analytical findings and show the temporal dynamics of gut microorganisms.
This study aimed to clarify the importance of ecological taxation in achieving sustainable development, by analyzing a set of economic measures such as taxes, taxes levied by the legislation in the field of ecology, to fight against pollution. And we tried to evaluate this initiative in Algeria. The results of the study showed that economic measures of ecological taxation contribute to achieving sustainable development, and Although Algeria has adopted a series of ecological tax mechanisms, it is far from keeping pace with developments in this area.
Start your abstract here the objective of this paper is to study the dynamical behaviour of an eco-epidemiological system. A prey-predator model involving infectious disease with refuge for prey population only, the (SI_) infectious disease is transmitted directly, within the prey species from external sources of the environment as well as, through direct contact between susceptible and infected individuals. Linear type of incidence rate is used to describe the transmission of infectious disease. While Holling type II of functional responses are adopted to describe the predation process of the susceptible and infected predator respectively. This model is represented mathematically by
Purpose: This study aimed to compare the stability and marginal bone loss of implants inserted with flapped and flapless approaches 8 weeks after surgery and 3 months after loading. Material and Methods: Thirty SLActive implants were inserted in 11 patients and early loaded with final restoration 8 weeks after healing period. The stability values determined by Osstell and the marginal bone loss measured by CBCT at the initial time (1st) and 8 weeks of the healing period (2nd) and 3 months after loading (3rd). Results: The overall survival rate was 100%. A significant increase in the 3rd implant stability value in the age of ˂ 40. A significant decrease in the 2nd implant stability value in both gender and traumatic zone with a flapless app
... Show MoreIraq, home of the Tigris and Euphrates rivers, has survived an extreme deficiency of surface water assets over the years. The gap is due to the decline of the Iraqi water share every year, as well as a high demand for water use from different sectors, particularly agriculture.
Dam development has long given significant economic benefits to Iraq in circulating low‐priced electricity and supporting low‐income farmers by supplying them with a free irrigation system (Zakaria et al, 2012). This encouraged domestic consumption and investment.
Despite the fact that numerous advantages are expected from dam construction, it should be painstakingly assessed, utilizing cost
The accumulation of toxic elements in vegetables and melons grown in agriculture, Brassica rapa - turnip, Solanum lycopersicum - tomato, Citrullus lanatus - watermelon, Capsicum annuum - bell pepper, Daucus carota - carrots, Cucurbita pepo - pumpkin, Cucumis melo - melon, and also Prunus armeniaca - apricot from fruit trees were analyzed. The excess of maximum allowable concentrations in agricultural crops of the element As by 1.65-1.75, Cd - 1.6-2.3, Cr -1.2-2.35, Cu -1.6-3.3, Ni - 1.16-3.53, Pb - 1.54-3.08, Al - 1.36-3.5, Sb - 2.0-33, Se - 1.1-3.3 times was established. The maximum allowable concentration of mercury in vegetables and melons was equal to 0.02 mg/kg,
... Show MoreIn this paper harmful phytoplankton and herbivorous zooplankton model with Hollimg type IV functional response is proposed and analyzed. The local stability analysis of the system is carried out. The global dynamics of the system is investigated with the help of the Lyapunov function. Finally, the analytical obtained results are supported with numerical simulation.
One of the principle inputs to project economics and all business decisions is a realistic production forecast and a practical and achievable development plan (i.e. waterflood). Particularly this becomes challenging in supergiant oil fields with medium to low lateral connectivity. The main objectives of the Production Forecast and feasibility study for water injection are:
1- Provide an overview of the total expected production profile, expected wells potential/spare capacity, water breakthrough timing and water cut development over time
2- Highlight the requirements to maintain performance, suggest the optimum developmen
The behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems' variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.