While traditional energy sources such as oil, coal, and natural gas drive economic growth, they also seriously affect people’s health and the environment. Renewable energies (RE) are presently seen as an efficient choice for attaining long-term sustainability in development. They provide an adequate response to climate change and supply sufficient electricity. The current situation in Iraq results from a decades-long scarcity of reliable electricity, which has impacted various industries, including agriculture. There are diverse prospects for using renewable energy sources to address the present power crisis. The economic and environmental impacts of renewable energy systems were investigated in this study by using the solar pumpi
... Show MoreAnew Solar concentrator have been designed in this paper, this concentrators Were based on the total internal reflection in a prism, the prism angles has been calculated by depending on the solar incident ray angle in baghdad for a year. The optical design consist ofa triangular presume, Where the solar cells on one side of the prism Wh?le the prism head towered the south. The results show that there is an increasing in the solar ray concentrators and the cell area is reduced.
One of the most important processes to obtain gasoline with high octane numbers is isomerization. In this paper, Pt/TiO2 was prepared successfully by using the sol–gel method by hydrolysis of titanium tetraisopropoxide as a titania source with ethanol and then platinum was loaded on the synthesized catalyst; the result shows that the sample prepared has a good crystallinity with a surface area of about 85 m2 /g and a pore volume of 0.1938 cm3 /g, while XRD shows that the prepared sample was anatase phase. The efect of both temperature and liquid hourly space velocity of the prepared catalyst was achieved by hydroisomerization of n-hexane in a fxed bed reactor with a temperature of 200–275 °C and LHSV 0.5–2h−1. The results show
... Show MoreTitanium-dioxide (TiO2) nanoparticles suspended in water, and ethanol based fluids have been prepared using one step method and characterized by scanning electron microscopy (SEM), and UV–visible spectrophotometer. The TiO2 nanoparticles were added to base fluids with different volume concentrations from 0.1% to1.5% by dispersing the synthesized nanoparticles in deionized water and ethanol solutions. The effective thermal conductivity, viscosity and pH of prepared nanofluids at different temperatures from 15 to 30 oC were carried out and investigated. It was observed that the thermal conductivity, pH, and viscosity of nanofluids increases with the increase in TiO2 nanoparticle volume fraction
... Show MoreIn this research TiO2 nano-powder was prepared by a spray pyrolysis technique and then adds to the TiO2 powder with particle size (0.523 μm) in ratio (0, 5, 10, 15 at %) atomic percentage, and then deposition of the mixture on the stainless steel 316 L substrate in order to use in medical and industrial applications.
Structure properties including x-ray diffraction (XRD) and scanning electron microscope (SEM0, also some of mechanical properties and the effect of thermal annealing in different temperature have been studied. The results show that the particle size of a prepared nano-powder was 50 up to 75 nm from SEM, and the crystal structure of the powders (original and nano powder) was rutile with tetragonal cell. An improvement in
A new nano-sized NiMo/TiO2-γ-Al2O3 was prepared as a Hydrodesulphurization catalyst for Iraqi gas oil with sulfur content of 8980 ppm, supplied from Al-Dura Refinery. Sol-gel method was used to prepare TiO2- γ-Al2O3 nano catalyst support with 64% TiO2, 32% Al2O3, Ni-Mo/TiO-γ-Al2O3 catalyst was prepared under vacuum impregnation conditions to loading metals with percentage 3.8 wt.% and 14 wt.% for nickel and molybdenum respectively while the percentage for alumina, and titanium became 21.7, and 58.61 respectively. The synthesized TiO2- γ-Al2O3 nanocomposites and Ni-Mo /TiO2
... Show MoreThe synthesis and bioactivity of zinc oxide nanoparticles has been extensively studied. The antibacterial activity of different antibiotics individually (ceftriaxone (C), chloramphenicol (CRO), penicillin (P) and amoxicillin (Ax)) and Zinc oxide nanoparticles (60μg/ml) in combination with the previously mentioned antibiotics has been demonstrated in the present study by using the disk diffusion assay method. The results showed a synergistic effect between Zinc oxide nanoparticles (ZnO NPs) and both Ax and P for most of the studied Gram-positive isolates (Staphylococcus aureus1, Staphylococcus aureus2, Staphylococcus epidermidis1, Staphylococcus epidermidis2, Enterococcus faecalis1, Enterococcus faecalis2 ) and between ZnO NPs and both C
... Show MoreInvestigation of the adsorption of Chromium (VI) on Fe3O4 is carried out using batch scale experiments according to statistical design using a software program minitab17 (Box-Behnken design). Experiments were carried out as per Box-Behnken design with four input parameters such as pH (2-8), initial concentration (50–150mg/L), adsorbent dosage (0.05–0.3 g) and time of adsorption (10–60min). The better conditions were showed at pH: 2; contact time: 60 min; chromium concentration: 50 mg/L and magnetite dosage: 0.3 g for maximum Chromium (VI) removal of (98.95%) with an error of 1.08%. The three models (Freundlich, Langmuir, and Temkin) were fitted to experimental data, Langmuir isotherm has bette
... Show MoreNanofluids, liquid suspensions of nanoparticles (NPs) dispersed in deionized (DI) water, brine, or surfactant micelles, have become a promising solution for many industrial applications including enhanced oil recovery (EOR) and carbon geostorage. At ambient conditions, nanoparticles can effectively alter the wettability of the strongly oil-wet rocks to water-wet. However, the reservoir conditions present the greatest challenge for the success of this application at the field scale. In this work, the performance of anionic surfactant-silica nanoparticle formulation on wettability alteration of oil-wet carbonate surface at reservoir conditions was investigated. A high-pressure temperature vessel was used to apply nano-modification of oil-wet
... Show MoreStudy of the development of an activated carbon nanotube catalyst for alkaline fuel cell technology. Through the prepared carbon nanotubes catalyst by an electrochemical deposition technique. Different analytical approaches such as X-ray diffraction (XRD) to determine the structural properties and Scanning Electron Microscope (SEM), were used to characterize, Mesh stainless steel catalyst substrate had an envelope structure and a large surface area. Voltages were also obtained at 1.83 V and current at 3.2 A of alkaline fuel cell. In addition, study the characterization of the electrochemical parameters.