In the present study, an attempt has been made to experimentally investigate the flexural performance of ten simply supported reinforced concrete gable roof beams, including solid control specimen (i.e., without openings) and nine beams with web openings of different dimensions and configurations. The nine beams with openings have identical reinforcement details. All beams were monotonically loaded to failure under mid-span loading. The main variables were the number of the created openings, the total area of the created openings, and the inclination angle of the posts between openings. Of interest is the load-carrying capacity, cracking resistance and propagation, deformability, failure mode, and strain development that represent the behavior of reinforced concrete gable beams. Test results showed that the total concrete weight consumed for the tested gable beams with openings was lower than the solid gable beam by (14.9–26%). This reduction in weight led to a reduction in the flexural stiffness and, in turn. in the load-carrying capacity by (6.2–17.9%). The percentage of the decrease in the concrete consumption to the reduction in the load-carrying capacity for the tested beams with openings attained (140–240%). It was recorded that the maximum crack width depended on the total area of the created openings rather than the number of these openings.
Environmental sustainability is described as one that avoids the depletion or deterioration of natural resources, while also allowing for the preservation of long-term environmental quality. By practicing environmental sustainability, we may assist to guarantee that the requirements of today’s population are satisfied without risking the capacity of future generations to meet their own needs in the future. Engineers in the field of concrete production are becoming increasingly interested in sustainable development, which includes the utilization of the locally available materials in addition to using the agricultural and industrial waste in construction industry as one of the possib
In this paper, a procedure to establish the different performance measures in terms of crisp value is proposed for two classes of arrivals and multiple channel queueing models, where both arrival and service rate are fuzzy numbers. The main idea is to convert the arrival rates and service rates under fuzzy queues into crisp queues by using graded mean integration approach, which can be represented as median rule number. Hence, we apply the crisp values obtained to establish the performance measure of conventional multiple queueing models. This procedure has shown its effectiveness when incorporated with many types of membership functions in solving queuing problems. Two numerical illustrations are presented to determine the validity of the
... Show MoreThis paper presents a brief study undertaken for improving the performance of information and communication management of construction projects through investing in information and communication technologies (ICT). The work aims at first to investigate and diagnose the problems, challenges, weaknesses, and inefficiencies related to information and communication management in projects in the construction industry of Iraq. Studying the diagnosed matters and the different solutions of ICT to improve project management performance is following the investigation process. The research presents a technological system suggested to process a lot of the diagnosed problems, challenges, weakness, and inefficiencies of the construction projects and t
... Show MoreOne of the Iraqi geotechnical problems is the presence of gypseous soils covering about (27-36) percentage of Iraq soils containing gypsum between (10-70) ratios. The main reason for soil problematic is the gypsum dissolution when these soils are inundated. However, the soluble gypsum can be leached out of the soil particles, so these problems can be led to cracking, tilting, and collapsing the related soil structure and changing the soil properties. The aim of this work is to investigate the performance of under-reamed piles as a new, improved method to reduce the moisture sensitive and the primary triggering mechanism for the volume reduction of collapsible soil, which is considered as a non-elastic deformation; this was done by c
... Show MoreThe design of reinforced concrete spread foundations mainly depends on soil bearing capacity, loading value, and column size. So for each design case, tiresome calculations and time consumption are needed. In this paper, generalized design charts are presented and plotted according to derivations based on the ACI 318 M-2019 Code. These charts could be used directly by the structural designers to estimate the column size, foundation thickness, and dimensions as well as the foundation reinforcement under a certain given concentric load assuming a uniformly distributed contact pressure underneath the foundation. Of noteworthy, these charts are oriented to deal with square isolated footings with a square concentric column, covering reasonable r
... Show MoreThis paper deals with a new Henstock-Kurzweil integral in Banach Space with Bilinear triple n-tuple and integrator function Ψ which depends on multiple points in partition. Finally, exhibit standard results of Generalized Henstock - Kurzweil integral in the theory of integration.
This study deals with the serviceability of reinforced concrete solid and perforated rafters with openings of different shapes and sizes based on an experimental study that includes 12 post-fire non-prismatic reinforced concrete beams (solid and perforated). Three groups were formed based on heating temperature (room temperature, 400 °C, and 700 °C), each group consisting of four rafters (solid, rafters with 6 and 8 trapezoidal openings, and rafter with eight circular openings) under static loading. A developed unified calculation technique for deflection and crack widths under static loading at the service stage has been provided, which comprises non-prismatic beams with or without opening exposed to flexure concentra
... Show MoreThis study focuses on studying the effect of reinforced steel in detail, and steel reinforcement (tensile ratio, compression ratio, size, and joint angle shape) on the strength of reinforced concrete (compressive strength) Fc' and searching for the most accurate details of concrete divisions, their behavior, and corner resistance of reinforced concrete joint. The comparison of this paper with previous studies, especially in the studied properties. The conclusions of the chapter are summarized that these effects had a clear effect and a specific effect on the behavior and resistance of the reinforced concrete corner joints under the negative moments and under their influence and the resulting stress conditions. The types of defects that can
... Show More