Preferred Language
Articles
/
UBfdLY0BVTCNdQwCPBJL
Recovering Time-Dependent Coefficients in a Two-Dimensional Parabolic Equation Using Nonlocal Overspecified Conditions via ADE Finite Difference Schemes
...Show More Authors

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 06 2009
Journal Name
Baghdad Science Journal
Extension of the Chebyshev Method of Quassi-Linear Parabolic P.D.E.S With Mixed Boundary Conditions
...Show More Authors

The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.

View Publication Preview PDF
Crossref
Publication Date
Thu Jun 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
A PARTICULAR SOLUTION OF THE TWO AND THREE DIMENSIONAL TRANSIENT DIFFUSION EQUATIONS
...Show More Authors

A particular solution of the two and three dimensional unsteady state thermal or mass diffusion equation is obtained by introducing a combination of variables of the form,
η = (x+y) / √ct , and η = (x+y+z) / √ct, for two and three dimensional equations
respectively. And the corresponding solutions are,
θ (t,x,y) = θ0 erfc (x+y)/√8ct and θ( t,x,y,z) =θ0 erfc (x+y+z/√12ct)

View Publication Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
One dimensional Finite Element Solution of Moving Boundaries in Far IR Laser Tissue Ablation
...Show More Authors

In this work, the finite element analysis of moving coordinates has been used to study the thermal behavior of the tissue subjected to both continuous wave and pulsed CO2 laser. The results are compared with previously published data, and a good agreement has been found, which verifies the implemented theory. Some conclusions are obtained; As pulse width decreases, or repetition rate increases, or fluence increases then the char depth is decreased which can be explained by an increase in induced energy or its rate, which increases the ablation rate, leading to a decrease in char depth. Thus: An increase in the fluence or decreasing pulse width or increasing repetition rate will increase ablation rate, which will increase the depth of cut

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Three-Dimensional Finite Element Simulation of the Buried Pipe Problem in Geogrid Reinforced Soil
...Show More Authors

Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.

This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Evaluating the effects of reservoir level and foundation depth on the dynamic behaviour of a rockfill dam using three-dimensional finite elements modelling
...Show More Authors
Abstract<p>This paper presents a three-dimensional Dynamic analysis of a rockfill dam with different foundation depths by considering the dam connection with both the reservoir bed and water. ANSYS was used to develop the three-dimensional Finite Element (FE) model of the rockfill dam. The essential objective of this study is the discussion of the effects of different foundation depths on the Dynamic behaviour of an embanked dam. Four foundation depths were investigated. They are the dam without foundation (fixed base), and three different depths of the foundation. Taking into consideration the changing of upstream water level, the empty, minimum, and maximum water levels, the results of the three-dimensional F</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Jul 27 2012
Journal Name
Journal Of Prosthodontics
A Three-Dimensional Finite Element Analysis for Overdenture Attachments Supported by Teeth and/or Mini Dental Implants
...Show More Authors

View Publication
Crossref (14)
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
International Journal Of Science And Research (ijsr)
Generalization of Rough Set Theory Using a Finite Number of a Finite d. g.'s
...Show More Authors

This paper is concerned with introducing and studying the new approximation operators based on a finite family of d. g. 'swhich are the core concept in this paper. In addition, we study generalization of some Pawlak's concepts and we offer generalize the definition of accuracy measure of approximations by using a finite family of d. g. 's.

View Publication Preview PDF
Publication Date
Fri Aug 30 2024
Journal Name
Iraqi Journal Of Science
A fourth Order Pseudoparabolic Inverse Problem to Identify the Time Dependent Potential Term from Extra Condition
...Show More Authors

     In this work, the pseudoparabolic problem of the fourth order is investigated to identify the time -dependent potential term under periodic conditions, namely, the integral condition and overdetermination condition. The existence and uniqueness of the solution to the inverse problem are provided. The proposed method involves discretizing the pseudoparabolic equation by using a finite difference scheme, and an iterative optimization algorithm to resolve the inverse problem which views as a nonlinear least-square minimization. The optimization algorithm aims to minimize the difference between the numerical computing solution and the measured data. Tikhonov’s regularization method is also applied to gain stable results. Two

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Oct 01 2015
Journal Name
Applied Mathematics And Computation
Identification of the time-dependent conductivity of an inhomogeneous diffusive material
...Show More Authors

View Publication
Scopus (10)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Sep 21 2016
Journal Name
Applicable Analysis
Retrieving the time-dependent thermal conductivity of an orthotropic rectangular conductor
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref