<span lang="EN-GB">Transmitting the highest capacity throughput over the longest possible distance without any regeneration stage is an important goal of any long-haul optical network system. Accordingly, Polarization-Multiplexed Quadrature Phase-Shift-Keying (PM-QPSK) was introduced lately to achieve high bit-rate with relatively high spectral efficiency. Unfortunately, the required broad bandwidth of PM-QPSK increases the linear and nonlinear impairments in the physical layer of the optical fiber network. Increased attention has been spent to compensate for these impairments in the last years. In this paper, Single Mode Fiber (SMF), single channel, PM-QPSK transceiver was simulated, with a mix of optical and electrical (Digital Signal Processing (DSP)) compensation stages to minimize the impairments. The behaviour of the proposed system was investigated under four conditions: without compensation, with only optical compensator, with only DSP compensator and finally with both compensators. An evidence improvement was noticed in the case of hybrid compensation, where the transmission distance was multiplied from (720 km) to more than (3000 km) at 40 Gb/s.</span>
Due to economic reasons or need for environmental conservatism or also preserve the natural resources; there has been an increasing shift towards the use of reclaimed asphalt pavement (RAP) materials in the pavement construction industry. Therefore, use the Reclaimed Asphalt Pavement (RAP) has been enormously increased in pavement construction and has been become common practice in many countries. Nevertheless, this is a relatively new concept in Iraq, and has to be remarked that is not used RAP in the production of HMA and this valuable material is mostly degraded. For this purpose, the reclaimed materials were collected from deteriorated pavement segments. The components of asphalt mixtures consist of: two asphalt penetration grades (40-5
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreWireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreUntil recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15
... Show MoreThe complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Tra
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreSilver sulfide and the thin films Ag2Se0.8Te0.2 and Ag2Se0.8S0.2 created by the thermal evaporation process on glass with a thickness of 350 nm were examined for their structural and optical properties. These films were made at a temperature of 300 K. According to the X-ray diffraction investigation, the films are polycrystalline and have an initial orthorhombic phase. Using X-ray diffraction research, the crystallization orientations of Ag2Se and Ag2Se0.8Te0.2 & Ag2Se0.8S0.2 (23.304, 49.91) were discovered (XRD). As (Ag2Se and Ag2Se0.8Te0.2 & Ag2Se0.8S0.2) absorption coefficient fell from (470-774) nm, the optical band gap increased (2.15 & 2 & 2.25eV). For instance, the characteristics of thin films made of Ag2Se0.8Te0.2 and Ag2Se0.8S0.2
... Show MoreThe analytical study of optical bistability is concerned in a fully
optimized laser Fabry-Perot system. The related phenomena of
switching dynamics and optimization procedure are also included.
From the steady state of optical bistability equation can plot the
incident intensity versus the round trip phase shift (φ) for different
values of dark mistuning
12
,
6
,
3
,
1.5
0 , o
or finesse (F= 1, 5, 20,
100). In order to obtain different optical bistable loops. The inputoutput
characteristic for a nonlinear Fabry-Perot etalon of a different
values of finesse (F) and using different initial detuning (φ0) are used
in this rese
Cerium oxide CeO2, or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the effect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show More