<span lang="EN-GB">Transmitting the highest capacity throughput over the longest possible distance without any regeneration stage is an important goal of any long-haul optical network system. Accordingly, Polarization-Multiplexed Quadrature Phase-Shift-Keying (PM-QPSK) was introduced lately to achieve high bit-rate with relatively high spectral efficiency. Unfortunately, the required broad bandwidth of PM-QPSK increases the linear and nonlinear impairments in the physical layer of the optical fiber network. Increased attention has been spent to compensate for these impairments in the last years. In this paper, Single Mode Fiber (SMF), single channel, PM-QPSK transceiver was simulated, with a mix of optical and electrical (Digital Signal Processing (DSP)) compensation stages to minimize the impairments. The behaviour of the proposed system was investigated under four conditions: without compensation, with only optical compensator, with only DSP compensator and finally with both compensators. An evidence improvement was noticed in the case of hybrid compensation, where the transmission distance was multiplied from (720 km) to more than (3000 km) at 40 Gb/s.</span>
In order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.
Sensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreEssential approaches involving photons are among the most common uses of parallel optical computation due to their recent invention, ease of production, and low cost. As a result, most researchers have concentrated their efforts on it. The Basic Arithmetic Unit BAU is built using a three-step approach that uses optical gates with three states to configure the circuitry for addition, subtraction, and multiplication. This is a new optical computing method based on the usage of a radix of (2): a binary number with a signed-digit (BSD) system that includes the numbers -1, 0, and 1. Light with horizontal polarization (LHP) (↔), light with no intensity (LNI) (⥀), and light with vertical polarization (LVP) (↨) is represen
... Show MoreIn the modern world, wind turbine (WT) has become the largest source of renewable energy. The horizontal-axis wind turbine (HAWT) has higher efficiency than the vertical-axis wind turbine (VAWT). The blade pitch angle (BPA) of WT is controlled to increase output power generation over the rated wind speed. This paper proposes an accurate controller for BPA in a 500-kw HAWT. Three types of controllers have been applied and compared to find the best controller: PID controller (PIDC), fuzzy logic type-2 controller (T2FLC), and hybrid type-2 fuzzy-PID controller (T2FPIDC). This paper has been used Mamdani and Sugeno fuzzy inference systems (FIS) to find the best inference system for WT controllers. Furthermore, genetic algorithm (GA) and particl
... Show MoreThis paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show More