The Internet image retrieval is an interesting task that needs efforts from image processing and relationship structure analysis. In this paper, has been proposed compressed method when you need to send more than a photo via the internet based on image retrieval. First, face detection is implemented based on local binary patterns. The background is notice based on matching global self-similarities and compared it with the rest of the image backgrounds. The propose algorithm are link the gap between the present image indexing technology, developed in the pixel domain, and the fact that an increasing number of images stored on the computer are previously compressed by JPEG at the source. The similar images are found and send a few images inst
... Show More
XML is being incorporated into the foundation of E-business data applications. This paper addresses the problem of the freeform information that stored in any organization and how XML with using this new approach will make the operation of the search very efficient and time consuming. This paper introduces new solution and methodology that has been developed to capture and manage such unstructured freeform information (multi information) depending on the use of XML schema technologies, neural network idea and object oriented relational database, in order to provide a practical solution for efficiently management multi freeform information system.
Endoscopy is a rapidly growing field of Neurosurgery, it is defined as the applying of endoscope to treat different conditions of brain pathology within cerebral ventricular system and beyond it, endoscopic procedures performed by using different equipment and recording system to make a better visualization enhancing the surgeon's view by increasing illumination and magnification to look around corner and to capture image on video or digital format for later studies.
This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show MoreThe Internet of Things (IoT) is an information network that connects gadgets and sensors to allow new autonomous tasks. The Industrial Internet of Things (IIoT) refers to the integration of IoT with industrial applications. Some vital infrastructures, such as water delivery networks, use IIoT. The scattered topology of IIoT and resource limits of edge computing provide new difficulties to traditional data storage, transport, and security protection with the rapid expansion of the IIoT. In this paper, a recovery mechanism to recover the edge network failure is proposed by considering repair cost and computational demands. The NP-hard problem was divided into interdependent major and minor problems that could be solved in polynomial t
... Show MoreObtaining the computational models for the functioning of the brain gives us a chance to understand the brain functionality thoroughly. This would help the development of better treatments for neurological illnesses and disorders. We created a cortical model using Python language using the Brian simulator. The Brian simulator is specialized in simulating the neuronal connections and synaptic interconnections. The dynamic connection model has multiple parameters in order to ensure an accurate simulation (Bowman, 2016). We concentrated on the connection weights and studied their effect on the interactivity and connectivity of the cortical neurons in the same cortical layer and across multiple layers. As synchronization helps us to mea
... Show MoreImage retrieval is used in searching for images from images database. In this paper, content – based image retrieval (CBIR) using four feature extraction techniques has been achieved. The four techniques are colored histogram features technique, properties features technique, gray level co- occurrence matrix (GLCM) statistical features technique and hybrid technique. The features are extracted from the data base images and query (test) images in order to find the similarity measure. The similarity-based matching is very important in CBIR, so, three types of similarity measure are used, normalized Mahalanobis distance, Euclidean distance and Manhattan distance. A comparison between them has been implemented. From the results, it is conclud
... Show MoreThis study investigates the impact of spatial resolution enhancement on supervised classification accuracy using Landsat 9 satellite imagery, achieved through pan-sharpening techniques leveraging Sentinel-2 data. Various methods were employed to synthesize a panchromatic (PAN) band from Sentinel-2 data, including dimension reduction algorithms and weighted averages based on correlation coefficients and standard deviation. Three pan-sharpening algorithms (Gram-Schmidt, Principal Components Analysis, Nearest Neighbour Diffusion) were employed, and their efficacy was assessed using seven fidelity criteria. Classification tasks were performed utilizing Support Vector Machine and Maximum Likelihood algorithms. Results reveal that specifi
... Show More