This paper describes the digital chaotic signal with ship map design. The robust digital implementation eliminates the variation tolerance and electronics noise problems common in analog chaotic circuits. Generation of good non-repeatable and nonpredictable random sequences is of increasing importance in security applications. The use of 1-D chaotic signal to mask useful information and to mask it unrecognizable by the receiver is a field of research in full expansion. The piece-wise 1-D map such as ship map is used for this paper. The main advantages of chaos are the increased security of the transmission and ease of generation of a great number of distinct sequences. As consequence, the number of users in the systems can be increased. Rec
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreThis paper deals with proposing new lifting scheme (HYBRID Algorithm) that is capable of preventing images and documents which are fraud through decomposing there in to the real colors value arrays (red, blue and green) to create retrieval keys for its properties and store it in the database and then check the document originality by retrieve the query image or document through the decomposition described above and compare the predicted color values (retrieval keys) of the query document with those stored in the database. The proposed algorithm has been developed from the two known lifting schemes (Haar and D4) by merging them to find out HYBRID lifting scheme. The validity and accuracy of the proposed algorithm have been ev
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreAn aircraft's landing stage involves inherent hazards and problems associated with many factors, such as weather, runway conditions, pilot experiences, etc. The pilot is responsible for selecting the proper landing procedure based on information provided by the landing console operator (LCO). Given the likelihood of human decisions due to errors and biases, creating an intelligent system becomes important to predict accurate decisions. This paper proposes the fuzzy logic method, which intends to handle the uncertainty and ambiguity inherent in the landing phase, providing intelligent decision support to the pilot while reducing the workload of the LCO. The fuzzy system, built using the Mamdani approach in MATLAB software, considers critical
... Show More