Background: Enforcement of sustainable and green chemistry protocols has seen colossal surge in recent times, the development of an effective, eco-friendly, simple and novel methodologies towards the synthesis of valuable synthetic scaffolds and drug intermediates. Recent advances in technology have now a more efficient means of heating reactions that made microwave energy. Efforts to synthesize novel heterocyclic molecules of biological importance are in continuation. Microwave irradiation is well known to promote the synthesis of a variety of organic and inorganic compounds. The aim of current study was to conceivea mild base mediated preparation of novel Schiff base of 2-Acetylpheno with trimethoprim drug (H2TPBD) and its complexes with Cu(II),Co(II),Zn(II),Cd(II) and Ni(II). Method: The products are likening with traditional processes for reaction time and their yield. (H2TPBD) and the complexes were diagnosed by spectroscopic (Mass, NMR, UV–vis, IR spectral studies, analytical and magnetic data. Results: All complexes were found to be six co-ordinate mono-hydrate as[M(TPBD)(H2O)] [1:1(ligand:metal) ratio] type. The complexes exhibited biological activity against (B.subtilis, P.aeruginosa, C.albicansand Staphylococcus aureus) bacterial strains as compared to (H2TPBD). The antibacterial efficiency showed the following trend: M(II)-complexes ˃ (H2TPBD) ˃ parent drugs. Cu(II), Co(II), Zn(II), Cd(II)andNi(II) complexes had good antioxidant efficiencies than the free ligand (H2TPBD). DNA binding study of complexes with (CT)-DNA utilizing binding nature of the complexes with CT DNA has moreover inveterate by viscometer and emission which then bespoken that complexes bound with CT DNA. The complexestook effective scavenging impact during the DPPH process. Conclusion: [H2TPBD] has been prepared by the condensation of trimethoprim drug and Acetylphenol and characterized by electronic absorption spectra, 1H and 13C-NMR and IR,mass UV-spectroscopies.
Aqueous root extract has been used to examine the green production of silver nanoparticles (AgNPs) by reducing the Ag+ ions in a silver nitrate solution. UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to analyze the produced AgNPs. The AgNPs that were created had a maximum absorbance at 416 nm, were spherical in form, polydispersed in nature, and were 685 nm in size.The AgNPs demonstrated antibacterial efficacy against Escherichia coli and Staphylococcus. The dengue vector Aedes aegypti's second instar larvae were very susceptible to the AgNPs' powerful larvicidal action.
kinetic studies were carried out the uterine homogenate time course of the association of with LH in benign and malignant uterine
The Coronavirus Disease (COVID-19) has recently emerged as a human pathogen caused by SARS-CoV-2 virus was first reported from Wuhan, China, on 31 December 2019. Upon study, it has been used molecular docking to binding affinity between COVID-19 protease enzyme and flavonoids with evaluations based on docking scores calculated by AutoDock Vina. Results showed that naringin suppressed COVID-19 protease, as it has the highest binding value than other flavonoids including quercetin, hesperetin, garcina and naringenin. An important finding in this study is that naringin with neighboring poly hydroxyl groups can serve as inhibitors of COVID-19 protease bind to the S pocket of protein, it is shown that residues His163, Glu166, Asn142, His41and
... Show MoreTwo ligand ortho-amino phenyl thio benzyl (L1) and 1,3 bis (ortho - amino phenyl thio ) acetone (L2) and their complexes have been prepared and characterized . The L1 ligand is lossing phenyl group on complexcation and forming 1,2 bis (ortho - amino phenyl thio ) ethane L3 and this tetrahedrally coordinated to the metal ion ( M+2 = Ni , Cu , Cd ) and octahedrally coordinated with mercury and cobalt ions , while the ligand L2 is behave as tridentate ligand forming octahedrally around chrome metal ion . Structural , diagnosis were established by i.r , Uv- visible , conductivity elemental analysis and (mass spectra , H nmr spectra for( L1 , L2 ) .
.Curcumin (Cur) and L phenylalanine (Phy) compounds were used to prepare two mixed ligand complexes with Cr (III) and Fe (III) ions. The synthesized complexes are characterized by using conductivity measurement and different spectral methods like FT-IR and UV- Vis .Molar conductance and analytical studies confirmed that the complexes exhibit octahedral geometry., suggest that the complexes are formed in 1: 1 :2 [ L : Metal : 2phe ] ratio and they proposed to have the general formulae [M(Cur)(phe)2] Cl (M= Cr (III) and Fe (III) The compound dyeing method was studied and applied to acrylic fabric.The antibacterial activity of curcumin, phenylalanine and their mixed ligand complexes were examined on pathogenic bacterial strains and showed good
... Show MoreQ-switched lasers widely used in management skin diseases and
sometimes its effect may be inadequate or associated with
cytotoxicity. The current study aimed to investigate the effect of
Q-switched Nd:YAG laser upon cellular elements using in vitro
experimental model. Aqueous solutions of human albumin and pure
calf thymus double strand deoxyribonucleic acid (ctdsDNA)
irradiated with Q-switched Nd:YAG laser at different rates (1, 3 Hz)
and time exposure (up to 60 seconds) using 532 nm (400 mJ) and
1064 (1200 mJ) nm wavelength with fixed spot size of 4 mm. The
effect of laser irradiation on the albumin solution also studied in the
presence of elemental salts of copper, zinc and iron.
Q-switched laser irrad
Ternary polymer blend of chitosan/poly vinyl alcohol/ poly vinyl pyrrolidone was prepared by solution castingmethod, nanocomposite was prepared by sonication method with nano Ag and Zn. All prepared compounds have been characterizedby FT-IR, SEM, DSC, as well as Biological activity. Antimicrobialactivity related to prepared blendsand Nanocomposites againstsix types of bacteria namely, Staphylococcus aureas, E. faecalis, S.typhi, P. aeruginosa, Bacillus subtilis, Escherichia coli andC. albicans fungal were examined and evaluated. The results reveal that the prepared polymer blends and nanocompositeshavegood antimicrobial activity against all kinds of microbials.
Polycyclicacetal was prepared by the reaction of PEG with 4-nitrobenzaldehyde. Cobalt was used for producing a polymer metal complex and solution casting was used to produce a polymer blend including nano chitosan. All produced compounds have been characterized by FT-IR, DSC/ TGA, and SEM techniques as well as biological activity. The production of polyacetal is illustrated by the FT-IR analysis. The DSC/TGA results indicate the prepared polymer blends' thermal stability. Staphylococcus aureas, Klebsiella pneumoniae, Bacillus subtilis, and Escherichia coli were the four types of bacteria selected to study and evaluate the antibacterial activity of produced polyacetal, its metal complex, and polymer blend. Results indicates that ther
... Show More