Preferred Language
Articles
/
TxeRII8BVTCNdQwCOFwO
Choosing the best method for estimating the survival function of inverse Gompertz distribution by using Integral mean squares error (IMSE)
...Show More Authors

In this research , we study the inverse Gompertz distribution (IG) and estimate the  survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes

Crossref
View Publication
Publication Date
Sun Mar 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Employment of the genetic algorithm in some methods of estimating survival function with application
...Show More Authors

Intended for getting good estimates with more accurate results, we must choose the appropriate method of estimation. Most of the equations in classical methods are linear equations and finding analytical solutions to such equations is very difficult. Some estimators are inefficient because of problems in solving these equations. In this paper, we will estimate the survival function of censored data by using one of the most important artificial intelligence algorithms that is called the genetic algorithm to get optimal estimates for parameters Weibull distribution with two parameters. This leads to optimal estimates of the survival function. The genetic algorithm is employed in the method of moment, the least squares method and the weighted

... Show More
Scopus (2)
Scopus
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimate AR(3) by Using Levinson-Durbin Recurrence & Weighted Least Squares Error Methods
...Show More Authors

In this study, we investigate about the estimation improvement for Autoregressive model of the third order, by using Levinson-Durbin Recurrence (LDR) and Weighted Least Squares Error ( WLSE ).By generating time series from AR(3) model when the error term for AR(3) is normally and Non normally distributed and when the error term has ARCH(q) model with order q=1,2.We used different samples sizes and the results are obtained by using simulation. In general, we concluded that the estimation improvement for Autoregressive model for both estimation methods (LDR&WLSE), would be by increasing sample size, for all distributions which are considered for the error term , except the lognormal distribution. Also we see that the estimation improve

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Estimating the Reliability Function of some Stress- Strength Models for the Generalized Inverted Kumaraswamy Distribution
...Show More Authors

This paper discusses reliability of the stress-strength model. The reliability functions 𝑅1 and 𝑅2 were obtained for a component which has an independent strength and is exposed to two and three stresses, respectively. We used the generalized inverted Kumaraswamy distribution GIKD with unknown shape parameter as well as known shape and scale parameters. The parameters were estimated from the stress- strength models, while the reliabilities 𝑅1, 𝑅2 were estimated by three methods, namely the Maximum Likelihood,  Least Square, and Regression.

 A numerical simulation study a comparison between the three estimators by mean square error is performed. It is found that best estimator between

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Bayesian and Non - Bayesian Inference for Shape Parameter and Reliability Function of Basic Gompertz Distribution
...Show More Authors

In this paper, some estimators of the unknown shape parameter and reliability function  of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weighted Residual Method for the System of Nonlinear Volterra Integral Equations of the Second Kind Using an Exponential Function
...Show More Authors

The numerical resolve nonlinear system of Volterra integral equation of the second kind (NLSVIEK2) has been considered. The exponential function is used as the base function of the collocation method to approximate the resolve of the problem. Arithmetic epitome are performed which have already been solved by weighted residual manner,  Taylor manner and block- by- block(2, 3, 5).

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 04 2016
Journal Name
Baghdad Science Journal
Estimating Parametersof Gumbel Distribution For Maximum Values By using Simulation
...Show More Authors

In this research estimated the parameters of Gumbel distribution Type 1 for Maximum values through the use of two estimation methods:- Moments (MoM) and Modification Moments(MM) Method. the Simulation used for comparison between each of the estimation methods to reach the best method to estimate the parameters where the simulation was to generate random data follow Gumbel distributiondepending on three models of the real values of the parameters for different sample sizes with samples of replicate (R=500).The results of the assessment were put in tables prepared for the purpose of comparison, which made depending on the mean squares error (MSE).

View Publication Preview PDF
Crossref
Publication Date
Wed Feb 01 2012
Journal Name
Ibn Al-haytham Journal For Pure And Applied Science
Using Restricted Least Squares Method to Estimate and Analyze the Cobb-Douglas Production Function with Applicatio
...Show More Authors

Publication Date
Mon May 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using Restricted Least Squares Method to Estimate and Analyze the Cobb-Douglas Production Function with Application
...Show More Authors

  In this paper, the restricted least squares method is employed to estimate the parameters of the Cobb-Douglas production function and then analyze and interprete the results obtained.         A practical application is performed on the state company for leather industries in Iraq for the period (1990-2010).         The statistical program SPSS is used to perform the required calculations.

View Publication Preview PDF
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Pointwise Estimates for Finding the Error of Best Approximation by Spline, Positive Algebraic Polynomials and Copositive
...Show More Authors

     The first step in this research is to find some of the necessary estimations in approximation by using certain algebraic polynomials, as well as we use certain specific points in approximation. There are many estimations that help to find the best approximation using algebraic polynomials and geometric polynomials. Throughout this research, we deal with some of these estimations to estimate the best approximation error using algebraic polynomials where the basic estimations in approximation are discussed and proven using algebraic polynomials that are discussed and proven using algebraic polynomials that are specified by the following points and  if   as well as if   .

  For the second step of the work, the estimatio

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Nov 28 2020
Journal Name
Iraqi Journal Of Science
Non Bayesian estimation for survival and hazard function of weighted Rayleigh distribution (b)
...Show More Authors

In this paper, we proposed a new class of Weighted Rayleigh Distribution based on two parameters, one is scale parameter and the other is shape parameter which introduced in Rayleigh distribution. The main properties of this class are derived and investigated in . The moment method and maximum likelihood method are used to obtain estimators of parameters, survival function and hazard function. Real data sets are collected to investigate two methods which depend it in this study. A comparison was made between two methods of estimation.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref