Identification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed to detect complex biological communities with high quality. Secondly, the variability in the capability of PSO to extract community structure in biological networks is studied when different types of crossover operators are used. Finally, to reduce the computational time needed to solve this problem, especially when detecting complex communities in large-scale biological networks, we have implemented parallel computing to execute the algorithm. The performance of the proposed algorithm was tested and evaluated on two real biological networks. The experimental results showed the effective performance of the proposed algorithm when using single-point crossover operator, and its superiority over other counterpart algorithms. Moreover, the use of parallel computing in the proposed algorithm representation has greatly reduced the computational time required for its execution.
Copper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreCopper (I) complex containing folic acid ligand was prepared and characterized on the basis of metal analyses, UV-VIS, FTIR spectroscopies and magnetic susceptibility. The density functional theory (DFT) as molecular modeling calculations was used to determine the donor atoms of folic acid ligand which appear clearly at oxygen atoms binding to hydrogen. Detection of donation sights is supported by theoretical parameters such as geometry, mulliken population, mulliken charge and HOMO-LUMO gap obtained by DFT calculations.
Objective: Matrix tablet approach is one of the delivery systems intended for poorly water-soluble drugs, like candesartan cilexetil (CC). CC is a class II drug used for the treatment of hypertension. Methods: Matrix tablets from (F1x to F18z) were prepared in the presence of β‑cyclodextrin. Matrix tablet formulation ensures control release of the drug and higher dissolution by β‑cyclodextrin. Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) were used to study compatibility. Results: The angle of repose determination showed good flow for most of the formulas, besides having good compressibility. Weight variation test for all formulas showed accepted value. Drug content measurement sho
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreThe problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.
The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show MoreThis paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere
... Show More