Identification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed to detect complex biological communities with high quality. Secondly, the variability in the capability of PSO to extract community structure in biological networks is studied when different types of crossover operators are used. Finally, to reduce the computational time needed to solve this problem, especially when detecting complex communities in large-scale biological networks, we have implemented parallel computing to execute the algorithm. The performance of the proposed algorithm was tested and evaluated on two real biological networks. The experimental results showed the effective performance of the proposed algorithm when using single-point crossover operator, and its superiority over other counterpart algorithms. Moreover, the use of parallel computing in the proposed algorithm representation has greatly reduced the computational time required for its execution.
The research studied and analyzed the hybrid parallel-series systems of asymmetrical components by applying different experiments of simulations used to estimate the reliability function of those systems through the use of the maximum likelihood method as well as the Bayes standard method via both symmetrical and asymmetrical loss functions following Rayleigh distribution and Informative Prior distribution. The simulation experiments included different sizes of samples and default parameters which were then compared with one another depending on Square Error averages. Following that was the application of Bayes standard method by the Entropy Loss function that proved successful throughout the experimental side in finding the reliability fun
... Show More<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
This study delves into the realm of advanced cooling techniques by examining the performance of a two-stage parallel flow indirect evaporative cooling system enhanced with aspen pads in the challenging climate of Baghdad. The objective was to achieve average air dry bulb temperatures (43 oC) below the ambient wet bulb temperatures (24.95 oC) with an average relative humidity of 23%, aiming for unparalleled cooling efficiency. The research experiment was carried out in the urban environment of Baghdad, characterized by high temperature conditions. The investigation focused on the potential of the two-stage parallel flow setup, combined with the cooling capability of aspen pads, to surpass the limitat
... Show MoreThe research aimed at identifying the relationship between motivation and self–confidence on the performing routines in the parallel bar. The researchers used the descriptive method on (480) thirds year college of physical education and sport sciences/ university of Baghdad students. The data was collected and treated using proper statistical operations to conclude that there is a high correlation relationship between motivation and self-confidence with routine performance on parallel bars. In addition to that, the researchers concluded that third-year students have high motivation and self – confidence and there is a positive relationship between motivation, self-confidence, and routine performance on parallel bars.
The aim of the present work is to develop a new class of natural fillers based polymer composites with sawdust (S.D) which used two particle sizes (1.2 μm & 2.3 μm) and different weight percentage from sawdust (10%, 15%, and 20%). The mechanical properties studied include hardness (shore D) for all samples at normal conditions (N.C). The unsaturated polyester (UPE) and its composites samples were immersed in water for 30 days to find the effect of particle size of sawdust (S.D) on the weight gain (Mt %) by water for all the samples, also to find the effect of water on their hardness. The results show that the composite materials of sawdust (S.D) fillers which has particle size (1.2 μm) better than (2.3 μm) particle size bef
... Show More