Preferred Language
Articles
/
TxZ9IIcBVTCNdQwCbDm1
Rock facies classification and its effect on the estimation of original oil in place based on petrophysical properties data
...Show More Authors

The most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishrif Formation; MA, MB11, MB12, MB21, MC1, and MC2. The precise facies modelling is constructed by using Petrel software while applying different appropriate scale-up methods. Consequently, the petrophysical properties such as porosity, water saturation and permeability are distributed within each unit depending on facies modelling. The Net to a gross parameter which has a significant impact on determining original oil in place (OIIP) also calculated and distributed using facies modelling. The facies modelling is performed to obtain an accurate estimation of OIIP. Finally, the results of the facies investigation have a significant effect on petrophysical properties and therefore affect the estimation of OIIP by 2\% for the whole Mishrif Formation.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network
...Show More Authors

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 22 2018
Journal Name
Journal Of Economics And Administrative Sciences
Performance Appraisal of Human Resource Management and Its Effect on Achieving the Organizational Success -A Field Search at the Ministry of Oil-
...Show More Authors

The present study addressed "Performance Appraisal of Human Resource Management and Its Effect on Achieving the Organizational Success", for the topics of performance appraisal of human resource management and the organizational success gained an increasing interest being relatively important and modern topics which had a great effect on the future of organizations.

The study aimed at revealing the pattern of appraising the performance of human resource management for the study sample, and whether it was qualified to lead the ministry towards the organizational success, for this purpose two main hypotheses were formulated: 1) there is a positive significant correlation between both variables: performanc

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Hybrid deep learning model for Arabic text classification based on mutual information
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Aug 31 2015
Journal Name
Journal Of Theoretical And Applied Information Technology
EXAM QUESTIONS CLASSIFICATION BASED ON BLOOM’S TAXONOMY COGNITIVE LEVEL USING CLASSIFIERS COMBINATION
...Show More Authors

Preview PDF
Scopus (74)
Scopus
Publication Date
Sat Apr 08 2023
Journal Name
Iraqi Journal Of Oil And Gas Research (ijogr)
How to Estimate the Major Petrophysical Properties: A Review
...Show More Authors

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Dec 30 2015
Journal Name
College Of Islamic Sciences
The causes of fear in the world An original Quranic study
...Show More Authors

The subject of fear is one of the most important tasks that one should seek to find out the reasons behind it, and push it up with all its sound mental concepts.
     The main reason for the lack of security and fear and disturbance in the world is to commit the legitimate violations that God warned us in his Holy Book as well as in the Sunnah of His Prophet (peace be upon him).
    The talk about the causes of fear in the Koran is not limited to the word (fear) Fakk but came in different and varied methods such as (horror) and (awe) and (shares) and (narrow).

View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Interpretation of Mud Losses in Carbonates Based on Cuttings Description, Well-Logging, Seismic and Coherency Data
...Show More Authors

    Hartha Formation is an overburdened horizon in the X-oilfield which generates a lot of Non-Productive Time (NPT) associated with drilling mud losses. This study has been conducted to investigate the loss events in this formation as well as to provide geological interpretations based on datasets from nine wells in this field of interest. The interpretation was based on different analyses including wireline logs, cuttings descriptions, image logs, and analog data. Seismic and coherency data were also used to formulate the geological interpretations and calibrate that with the loss events of the Hartha Fm.

   The results revealed that the upper part of the Hartha Fm. was identified as an interval capable of creating potentia

... Show More
View Publication Preview PDF
Crossref