The style of Free-form Geometry (FFG) has emerged in contemporary architecture within the last three decades around the world through the progress of digital design tools and the development of constructive materials. FFG is considered as the hard efforts of several contemporary architects to release their products from familiar restrictions to discover new and unfamiliar styles under the perspective of innovation. Many contemporary architects seek to recognize their forms and facilitate dealing with according to specific dimensional rules. The main research problem is the lack of knowledge, in the field of architecture, in previous literature about the formation processes in achieving FFG in contemporary architecture as a response to the new requirements that make architecture more flexible in the final expression and breaking away from regularity. Thus, this paper aims to establish a theoretical framework to determine dimensional rules as formation techniques and utilize them as tools in designing processes, to finally benefit to attain several free-form geometries in architecture now and in the future. The research results confirm the importance of dimensional rules in the designing processes as an effective contribution to achieving FFGs in contemporary architecture.
The current study discusses one of the most important modern schools in art, and it studies its impact on contemporary Iraqi art, particularly in the art of pottery because of its association to the utilitarian function. However, this study demonstrated that pottery is a unique art, which has exceeded the limits of this function. In addition, pottery has a great role in changing the view and understanding of it. Therefore, this art assists in achieving the concepts, philosophies, and values among other fine arts branches.The most prominent issues in this article is dealing with reflections of the cubical arts on the Iraqi contemporary pottery art by through the works of the most prominent contemporary artists such as (Saad Shakir, SHania
... Show Moreم. د. ولاء طارق حميد, Al. Qadisiya journal for the Sciences of Physical Education, 2017
The effective insulation design of the stress grading (SG) system in form-wound stator coils is essential for preventing partial discharges and excessive heat generation under pulse-width modulation excitation. This paper proposes a method to find the optimal insulation design of the SG system aimed at reducing the dielectric and thermal stresses in the machine coil. The non-uniform transmission line model is used to predict the voltage propagation along the overhang, SG, and slot regions considering the variation in the physical properties of the insulation layers. The machine coil parameters for different insulation materials are calculated by using the finite element method. Two optimization algorithms, fmincon and particle swarm optimiz
... Show MoreThe study aimed at designing a training program by using training for the anaerobic differential threshold stand and the effects of those trainings on the variables of (Concentration of Lactic Acid and LDH Enzyme, VO2 MaX and Cortisol Hormone). The Researchers used the experimental program with one-group style. Also, they used a sample with (8) men-players in a (free 400 m men-runners) and they used many instruments and procedures, most notably the training-program prepared for 10 weeks and for 3 training units weekly, (70-90 min) for each unit. They used the training intensity from 85-100% of the player's ability. After finishing the training program and doing some pre-tests and post-tests then statistically checking the results, the resea
... Show MoreThe nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square
The nuclear charge density distributions, form factors andcorresponding proton, charge, neutron, and matter root mean squareradii for stable 4He, 12C, and 16O nuclei have been calculated usingsingle-particle radial wave functions of Woods-Saxon potential andharmonic-oscillator potential for comparison. The calculations for theground charge density distributions using the Woods-Saxon potentialshow good agreement with experimental data for 4He nucleus whilethe results for 12C and 16O nuclei are better in harmonic-oscillatorpotential. The calculated elastic charge form factors in Woods-Saxonpotential are better than the results of harmonic-oscillator potential.Finally, the calculated root mean square radii usingWoods-Saxonpotentials ho
... Show MoreThe solvent free oxidation of benzyl alcohol was conducted employing Au and Pd supported catalysts, while utilizing hydrogen peroxide 35% (H2O2) as the oxidant, H2O2 is very cheap, mild, and an environment friendly reagent, which produced water as the only by-product. Various proportions of Au-Pd catalysts on carbon and titanium oxide activated as supports were synthesized through the use of sol immobilization catalyst synthesis technique. Characterization of the synthesized catalysts was performed using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). It was found that the synthesized Au-Pd/ activated carbon catalyst was benef
... Show MoreThis article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.
This work intends to develop an effective heavy metal-free modifier having properties comparable to traditional stabilizers and flame retardants, simultaneously being environmentally friendly and may be superior in many aspects. The important requirement focused on is: how to increase thermal stability and flame retardancy of flexible poly(vinyl chloride). Due to the typical materials now used with poly(vinyl chloride), which increases health and environmental concerns, utilizing a novel heavy metal-free additive will make poly(vinyl chloride) substantially safer. We have used an artificial silicate for this aim, which proved to be an efficient flame retardant and surprisingly showed excellent heat stabilizing effect. Thermal stabi
... Show More