Exploring the antibacterial potential of neem oil (Azadirachta indica) in combination with gentamicin (GEN) against pathogenic molds, especially Pseudomonas aeruginosa, has drawn concern due to the quest for natural treatment options against incurable diseases. Prospective research directions include looking for natural cures for many of the currently incurable diseases available now. microbial identification system, were used to identify the isolates. The research utilized a range of methods, such as the diffusion agar well (AWD) assays, TEM (transmission electron microscopy) analysis, minimum inhibitory concentration (MIC) assays, and real-time PCR (RT-qPCR) to analyze bacterial expression and the antibacterial action of neem oil (Azadirachta indica) combined with gentamicin (GEN) against the pathogenic bacteria Pseudomonas aeruginosa between others. The combined effects of neem oil and GEN on P. aeruginosa are extensively investigated in this study, with particular attention paid to the downregulation of the virulent factor gene phzM, inhibition of biofilm formation, morphological changes, and gene expression, in that proportion. Results show that neem oil has strong antibacterial activity against P. aeruginosa and S. aureus, preventing the formation of biofilms and causing morphological alterations. In addition, the synergistic effects of neem oil and GEN are demonstrated, together in order with the downregulation of the phzM gene in P. aeruginosa. These results highlight the increased effectiveness of neem oil when combined with GEN and point to the potential of the oil as a stand-alone antibacterial agent. They also highlight the need for more study to overcome antibiotic resistance in harmful bacteria. Overall, our results point to a possibility that neem oil extract, either alone or in combination with GEN, can suppress the development of pathogenic microbes. This synergistic impact is related to the downregulation of a virulence factor gene. To address the drug resistance linked to pathogenic microbes, greater study is required. Novelty of study addresses the important issue of antibiotic resistance by exploring the potential synergistic effects of neem oil and gentamicin on pathogenic bacteria, particularly Pseudomonas aeruginosa. This topic is highly relevant in the context of the global challenge of antimicrobial resistance. Novelty and relevance the important issue of antibiotic resistance by exploring the potential synergistic effects of neem oil and gentamicin on pathogenic bacteria, particularly Pseudomonas aeruginosa. This topic is highly relevant in the context of the global challenge of antimicrobial resistance.
Pseudomonas aeruginosa is the most common opportunistic pathogen causing morbidity and mortality in hospitalized patients due to its multiple resistance mechanisms. Therefore, as a therapeutic option becomes restricted, the search for a new agent is a preference. So P. aeruginosa is an extremely versatile Gram-negative bacterium capable of thriving in a broad spectrum of environments, and this performs main problems to workers in the field of health. One hundred and fifty samples were collected from different sources from Baghdad hospitals, divided into two main groups: clinical (100) specimens and (50) samples as an environmental, collected from October 2019 to the March 2020. All of these samples were cultured by specific and differential
... Show MoreA total of 60 cotton swabs are collected from patients suffering from burn wound and surgical site infections admitted to Baghdad Teaching Hospital and Burn Specialist Hospital in Baghdad city during 9/2013 to 11/2013. All cotton swabs are cultured initially on blood agar and MacConkey agar and subjected for standard bacteriological procedures for bacteriological diagnosis. Twenty samples out of sixty are identified as Pseudomonas aeruginosa by conventional methods. The results of antibiotic susceptibility test illustrate that the antibiotics resistance rate of Pseudomonas aeruginosa isolates is as follows:100% (2020) for ceftriaxone, cefepime and carbencillin, 70% (14/20) for amikacin, 65%(13/20) for tobramycin, ceftazidim and gentamycin,
... Show MoreObjective: The present work was undertaken to investigate the impact of sub inhibitory concentration of gentamicin on hla gene expression in methicillin resistant Staphylococcus aureus isolates. Methods: The bacterial isolates used in this study represent 33 MRSA strains, previously isolated form patients visiting several hospitals in Baghdad. Gentamicin, vancomycin, and oxacillin MIC were determined using broth dilution method. Microtiter plate method was adopted to investigate the biofilm forming capacity. Alpha hemolysin was detected by culturing MRSA isolates on rabbit blood agar. Furthermore, hla gene was detected in MRSA isolates using conventional PCR technique; while, qRT-PCR method was performed to assay the hla expression in plank
... Show MoreThe purpose of this study was to determine the influence of environmental pH on production of biofilms and virulence genes expression in Pseudomonas aeruginosa.
Among 303 clinical and environmental samples 109 (61 + 48) isolates were identified as clinical and environmental P. aeruginosa isolates, respectively. Clinical samples were obtained from patients in the Al-Yarmouk hospital in Baghdad city, Iraq. Waste water from Al-Yarmouk hospital was used from site before treatment unit to collect environmental samples. The ability of prod
The current study was designed to explore the association between the pigments production and biofilm construction in local Pseudomonas aeruginosa isolates. Out of 143 patients suffering from burns, urinary tract infections (UTI), respiratory tract infections and cystic fibrosis obtained from previous study by Mahmood (2015), twenty two isolates (15.38%) were identified from (11) hospitals in Iraq, splitted into three provinces, Baghdad, Al-Anbar and Karbala for the duration of June 2017 to April 2018. Characterization was carried out by using microscopical, morphological and biochemical methods which showed that all these isolates belong to P. aeruginosa. Screening of biofilm production isolates was carried out by usi
... Show MorePseudomonas aeruginosa, a ubiquitous environmental organism, is a difficult-to-treat opportunistic pathogen due to its broad-spectrum antibiotic resistance and its ability to form biofilms. In this study, we investigate the link between resistance to a clinically important antibiotic, imipenem, and biofilm formation. First, we observed that the laboratory strain P. aeruginosa PAO1 carrying a mutation in the oprD gene, which confers resistance to imipenem, showed a modest reduction in biofilm formation.We also observed an inverse relationship between imipenem resistance and biofilm formation for imipenem-resistant strains selected in vitro, as well as for clinical isolates.We identified two clinical isolates of P. aeruginosa from the sputum
... Show More16S rRNA gene sequence examination is an effective instrument for characterization of new pathogens in clinical specimens. Akey component of colonization, biofilm formation, and protection of the pragmatic human pathogen Pseudomonasaeruginosais the biosynthesis of the exopolysaccharide Psl.Extracellular polysaccharides,biofilm, are secreted by microorganisms into the neighboring environment and are significant for surface attachment and keeping structural safety within biofilms.Biofilm production is an important technique for the survival of P. aeruginosa,and its association with antimicrobial resistance represents a defy for patient therapeutics. The aim of the current research is to assess the antibiotic resistance manner and distribution
... Show MoreThe genic variation analysis of Pseudomonas aeruginosa after filtering the spurious variation appeared that 222 variable loci out of 5572 loci were detected. The type of variation analysis revealed that single nucleotide polymorphism was highly significant compared with other types of variation due the fact that the genome variation was achieved on the level of microevolution. Moreover, the proportional effect of functional scheme showed that genes responsible for environmental information were the highest comparable to another scheme. The genes of environmental information processing locate on outer membrane and face the defense strategy of the host therefore change in proteins coded by these genes lead to escape the immune system defense
... Show More