Exploring the antibacterial potential of neem oil (Azadirachta indica) in combination with gentamicin (GEN) against pathogenic molds, especially Pseudomonas aeruginosa, has drawn concern due to the quest for natural treatment options against incurable diseases. Prospective research directions include looking for natural cures for many of the currently incurable diseases available now. microbial identification system, were used to identify the isolates. The research utilized a range of methods, such as the diffusion agar well (AWD) assays, TEM (transmission electron microscopy) analysis, minimum inhibitory concentration (MIC) assays, and real-time PCR (RT-qPCR) to analyze bacterial expression and the antibacterial action of neem oil (Azadirachta indica) combined with gentamicin (GEN) against the pathogenic bacteria Pseudomonas aeruginosa between others. The combined effects of neem oil and GEN on P. aeruginosa are extensively investigated in this study, with particular attention paid to the downregulation of the virulent factor gene phzM, inhibition of biofilm formation, morphological changes, and gene expression, in that proportion. Results show that neem oil has strong antibacterial activity against P. aeruginosa and S. aureus, preventing the formation of biofilms and causing morphological alterations. In addition, the synergistic effects of neem oil and GEN are demonstrated, together in order with the downregulation of the phzM gene in P. aeruginosa. These results highlight the increased effectiveness of neem oil when combined with GEN and point to the potential of the oil as a stand-alone antibacterial agent. They also highlight the need for more study to overcome antibiotic resistance in harmful bacteria. Overall, our results point to a possibility that neem oil extract, either alone or in combination with GEN, can suppress the development of pathogenic microbes. This synergistic impact is related to the downregulation of a virulence factor gene. To address the drug resistance linked to pathogenic microbes, greater study is required. Novelty of study addresses the important issue of antibiotic resistance by exploring the potential synergistic effects of neem oil and gentamicin on pathogenic bacteria, particularly Pseudomonas aeruginosa. This topic is highly relevant in the context of the global challenge of antimicrobial resistance. Novelty and relevance the important issue of antibiotic resistance by exploring the potential synergistic effects of neem oil and gentamicin on pathogenic bacteria, particularly Pseudomonas aeruginosa. This topic is highly relevant in the context of the global challenge of antimicrobial resistance.
Polyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI
The aim of this study was to determine the influence of feeding diets containing different levels of sesame seeds and oil on the egg quality of laying quail. A total of 120, 10 weeks old, were randomly assigned to 1 of 5 dietary groups and fed for 12 weeks diets containing 0% sesame seeds + 0% sesame oil (control group; C) or 0.5% sesame oil (T1), 1% sesame oil (T2), 1% sesame seeds (T3), and 2% sesame seeds (T4).The study was terminated when the birds were 22 weeks of age. Egg quality characteristics involved in the present study were egg weight, yolk diameter, yolk height, yolk weight, albumen height, albumen weight,Haugh unit, shell weight, shell thickness, shell percentage, yolk percentage, and albumen percentage. The addition of sesame
... Show MoreIn the recent decade, injection of nanoparticles (NPs) into underground formation as liquid nanodispersions has been suggested as a smart alternative for conventional methods in tertiary oil recovery projects from mature oil reservoirs. Such reservoirs, however, are strong candidates for carbon geo-sequestration (CGS) projects, and the presence of nanoparticles (NPs) after nanofluid-flooding can add more complexity to carbon geo-storage projects. Despite studies investigating CO2 injection and nanofluid-flooding for EOR projects, no information was reported about the potential synergistic effects of CO2 and NPs on enhanced oil recovery (EOR) and CGS concerning the interfacial tension (γ) of CO2-oil system. This study thus extensively inves
... Show MoreIn this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce
Paper Type: Review article.
another suggestion based on artificial neural networks.
The advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages
... Show MoreSolvents are important components in the pharmaceutical and chemical industries, and they are increasingly being used in catalytic reactions. Solvents have a significant influence on the kinetics and thermodynamics of reactions, and they can significantly change product selectivity. Solvents can influence product selectivity, conversion rates, and reaction rates. However, solvents have received a lot of attention in the field of green chemistry. This is due to the large amount of solvent that is frequently used in a process or formulation, particularly during the purification steps. However, neither the solvent nor the active ingredient in a formulation is directly responsible for the reaction product's composition. Because these ch
... Show MoreBackground: Injuries to blood vessels are among the most dramatic challenges facing trauma surgeons because repair is often urgent, the surgeon has to decide between management options (open or endovascular), and gaining control and reconstructing a major arterial injury can be technically demanding .
Objective:,To analyze the cause of injury, surgical approach, outcome and complications of axillary artery injuries.
Methods A descriptive cross-sectional study on fifty patients at Ibn-Alnafees hospital in Baghdad from January 2005 to December 2010
Results Males were more commonly affected than female with ratio of 6.1:1. Most injuries were caused by bullet and shell (84%), followed by stab wounds (10%) and blunt trauma (6%). Pati
Seawater might serve as a fresh‐water supply for future generations to help meet the growing need for clean drinking water. Desalination and waste management using newer and more energy intensive processes are not viable options in the long term. Thus, an integrated and sustainable strategy is required to accomplish cost‐effective desalination via wastewater treatment. A microbial desalination cell (MDC) is a new technology that can treat wastewater, desalinate saltwater, and produce green energy simultaneously. Bio‐electrochemical oxidation of wastewater organics creates power using this method. Desalination and the creation of value‐added by‐products are expected because of this ionic mov