In this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of 2.5[Formula: see text]min/L to prepare the platinum nanoparticles, and spectroscopic study of plasma parameter including, electron temperature, electron density, Debye length and plasma frequency, were computed using spectral analysis techniques. The effect of nanoparticles on natural lymphocytes was studied to calculate cytotoxicity and the greatest proportion was at the concentration of 100% nanoparticle platinum is 37.4%. The study results revealed that cold in the atmosphere is a promising technology when used in the production of nanoparticle materials which can be used for many industrial and medical applications.
The oxidation desulphurization assisted by ultrasound waves was applied to the desulphurization of heavy naphtha. Hydrogen peroxide and acetic acid were used as oxidants, ultrasound waves as phase dispersion, and activated carbon as solid adsorbent. When the oxidation desulphurization (ODS) process was followed by a solid adsorption step, the performance of overall Sulphur removal was 89% for heavy naphtha at the normal condition of pressure and temperature. The process of (ODS) converts the compounds of Sulphur to sulfoxides/ sulfones, and these oxidizing compounds can be removed by activated carbon to produce fuel with low Sulphur content. The absence of any components (hydrogen peroxide, acetic acid, ultrasound waves and activated car
... Show MoreA pulsed (TEA-0O2) laser was used to dissociate molecules of silane ethylene (C2I-14) and ammonia (NH3) gases, through collision assisted multiple photon dissociation (MPD) to deposit(SiC i_xNx) thin films, where the X-values are 0, 0.13 and 0.33, on glass substrate at T,----648 K. deposition rate of (0.416-0.833) nm/pulse and thickness of (500-1000)nm .Fourier transform infrared spectrometry (FT-IR) was used to study the nature of the chemical bonds that exist in the films. Results revealed that these films contain complex networks of the atomic (Si, C, and N), other a quantity of atomic hydrogen and chemical bonds such as (Si-N, C-N, C-14 and N-H).Absorbance and Transmittance spectra in the wavelength range (400-1100) nm were used to stud
... Show MoreObjectives: This study explored knowledge, attitude, and practice of infection control by dental students at College of Dentistry/ University of Baghdad, Iraq. Material and Methods: Three hundred dental students participated in this study. A self administrated questionnaire with 21 close ended questions related to use of personal protective equipments, infection control awareness, vaccination status, percutaneous exposures, and attitude towards treatment of patients with hepatitis B (HBV)/ or human immunodeficiency virus (HIV) was distributed to dental students. Data were analyzed using Statistical Package for Social Sciences (SPSS) version 21. Fisher exact and Chi-square test were used with significance level set to 0.05. Results: The
... Show MoreThe study included adding antimony oxide to mixtures of coating metal surfaces (Enameling), after it was selected ceramic materials used in the coating metal pieces of the type of steel and cast iron in two layers. The first is called a ground coat and the second is a cover coat.
Ceramic materials layer for ground coat have been melted down in
platinum crucible at a temperature of 1200oC to prepare the glass
mixture (Frit). It was coated on metals at a temperature of 780oC for
two minutes, while the second layer was prepared glass mixture
(Frit) at a temperature of 1200oC, but was coated at a temperature of
760oC for two minutes.
Underwent tests crystalline state of powders (Frits) and enameled samples using X-ray di
Background: This in vitro study was carried out to evaluate the effects of various veneering dentin ceramic thicknesses and repeated firings on the color of lithium disilicate glass-ceramic (IPS e.max Press) and zirconium-oxide (IPS ZirCAD) all-ceramic systems, measured by clinical spectrophotometers (Easyshade Advance 4.0) . Materials and methods: The 72specimens cube-shaped have the dimension of about 11 mm in width, 14 mm in length, 1mm in thickness, these cores divided into 3 groups according to the type of material each group have (24)core specimens. Each group had been divided into three sub-groups (each having 8 specimens) according to veneering with dentin ceramic thicknesses: as 0.5, 1, or 2 mm (n=8). IPS e.max press and ZirCAD c
... Show MoreThe current research aims to identify the effect of the learning mastery strategy using interactive learning as a therapeutic method on the achievement of secondary school students in mathematics. To achieve the research objective, the researcher selected second-grade middle school students at Al-Haybah Intermediate School for Boys and determined his research sample, which consisted of (77) students distributed into two sections: Section (A) the experimental group, with (38) students, and Section (B) the control group, with (39) students. The statistical equivalence of the two research sample groups was confirmed in the variables (intelligence test, previous achievement, and previous knowledge test). The researchers chose the par
... Show MoreThe current research aims to examine the effect of the rapid learning method in developing creative thinking among second-grade female students in the subject of history. Thus, the researcher has adopted an experimental design of two groups to suit the nature of the research. The sample of the study consists of (36) randomly selected students from Al-Shafaq Secondary School for Women, which are divided randomly into two groups. The first group represents the experimental; it includes (31) students who studied the subject of history using the quick learning method. The second group, on the other hand, is the control group, which consists of (32) students, who studied the same subject using the traditional way. Before starting with the exp
... Show MoreActivated carbon prepared from date stones by chemical activation with ferric chloride (FAC) was used an adsorbent to remove phenolic compounds such as phenol (Ph) and p-nitro phenol (PNPh) from aqueous solutions. The influence of process variables represented by solution pH value (2-12), adsorbent to adsorbate weight ratio (0.2-1.8), and contact time (30-150 min) on removal percentage and adsorbed amount of Ph and PNPh onto FAC was studied. For PNPh adsorption,( 97.43 %) maximum removal percentage and (48.71 mg/g) adsorbed amount was achieved at (5) solution pH,( 1) adsorbent to adsorbate weight ratio, and (90 min) contact time. While for Ph adsorption, at (4) solution pH, (1.4) absorbent to adsorbate weight ratio, and (120 min) contact
... Show MoreThis study examines the removal of ciprofloxacin in an aqueous solution using green tea silver nanoparticles (Ag-NPs). The synthesized Ag-NPs have been classified by the different techniques of SEM, AFM, BET, FTIR, and Zeta potential. Spherical nanoparticles with average sizes of 32 nm and a surface area of 1.2387m2/g are found to be silver nanoparticles. The results showed that the ciprofloxacin removal efficiency depends on the initial pH (2.5-10), CIP (2-15 mg/L), temperature (20-50°C), time (0-180 min), and Ag-NPs dosage (0.1-1g/L). Batch experiments revealed that the removal rate with ratio (1:1) (w/w) were 52%, and 79.8% of the 10 mg/L of CIP at 60, and 180 minutes, respectively with optimal pH=4. Kinetic models for adsorpti
... Show More