In this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of 2.5[Formula: see text]min/L to prepare the platinum nanoparticles, and spectroscopic study of plasma parameter including, electron temperature, electron density, Debye length and plasma frequency, were computed using spectral analysis techniques. The effect of nanoparticles on natural lymphocytes was studied to calculate cytotoxicity and the greatest proportion was at the concentration of 100% nanoparticle platinum is 37.4%. The study results revealed that cold in the atmosphere is a promising technology when used in the production of nanoparticle materials which can be used for many industrial and medical applications.
In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those
... Show MoreIn this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those methods i
... Show MoreIn this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo
... Show MoreThis paper analyzes a piled-raft foundation on non-homogeneous soils with variable layer depth percentages. The present work aims to perform a three-dimensional finite element analysis of a piled-raft foundation subjected to vertical load using the PLAXIS 3D software. Parametric analysis was carried out to determine the effect of soil type and initial layer thickness. The parametric study showed that increasing the relative density from 30 % to 80 % of the upper sand layer and the thickness of the first layer has led to an increase in the ultimate load and a decrease in the settlement of piled raft foundations for the cases of sand over weak soil. In clay over weak soil, the ultimate load of the piled raft foundation w
... Show MoreHartree-Fock calculations for even-even Tin isotopes using
Skyrme density dependent effective nucleon-nucleon interaction are
discussed systematically. Skyrme interaction and the general formula
for the mean energy of a spherical nucleus are described. The charge
and matter densities with their corresponding rms radii and the
nuclear skin for Sn isotopes are studied and compared with the
experimental data. The potential energy curves obtained with
inclusion of the pairing force between the like nucleons in Hartree-
Fock-Bogoliubov approach are also discussed.
Many production companies suffers from big losses because of high production cost and low profits for several reasons, including raw materials high prices and no taxes impose on imported goods also consumer protection law deactivation and national product and customs law, so most of consumers buy imported goods because it is characterized by modern specifications and low prices.
The production company also suffers from uncertainty in the cost, volume of production, sales, and availability of raw materials and workers number because they vary according to the seasons of the year.
I had adopted in this research fuzzy linear program model with fuzzy figures
... Show MoreThe δ-mixing ratios have been calculated for several γ-transitions in 90Mo using the 𝛔 𝐉 method. The results are compared with other references the agreement is found to be very good .this confirms the validity of the 𝛔 𝐉 method as a tool for analyzing the angular distribution of γ-ray. Key word: population parameter, γ-ray transition, 𝛔 𝐉 method, multiple mixing ratios.
A new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL). We analyzed the stability of our method. The numerical results are presented to illustrate the efficiency of the new method in comparison with some well-known RK methods.
In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.