In this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of 2.5[Formula: see text]min/L to prepare the platinum nanoparticles, and spectroscopic study of plasma parameter including, electron temperature, electron density, Debye length and plasma frequency, were computed using spectral analysis techniques. The effect of nanoparticles on natural lymphocytes was studied to calculate cytotoxicity and the greatest proportion was at the concentration of 100% nanoparticle platinum is 37.4%. The study results revealed that cold in the atmosphere is a promising technology when used in the production of nanoparticle materials which can be used for many industrial and medical applications.
The design, synthesis, and characterization of a star shaped 2,4,6-tris-(4`-carboxyphenoxy)-1,3,5-triazine liquid crystalline with columnar discotic mesophase properties establish H-bond interactions with 3,5-dialkoxypyidine were reported. The structures of the synthesized compounds were actually determined by elementary analysis, and FT-IR, ¹HNMR, ¹³CNMR, and mass spectroscopy. The mesomorphic properties of these mesogens were examined using differential scanning calorimetry (DSC) and optical polarizing microscopy (OPM). The synthesized molecules exhibited enantiotropic hexagonal columnar liquid crystal, which depends for the H- bond complex in a 1:3 ratio.
Abstract
In this work, the plasma parameters (electron temperature (Te), electron density( ne), plasma frequency (fp) and Debye length (λD)) have been studied by using the spectrometer that collect the spectrum of Laser produce CdTe(X):S(1-X) plasma at X=0.5 with different energies. The results of electron temperature for CdTe range 0.758-0.768 eV also the electron density 3.648 1018 – 4.560 1018 cm-3 have been measured under vacuum reaching 2.5 10-2 mbar .Optical properties of CdTe:S were determined through the optical transmission method using ultraviolet visible spectrophotometer within the r
... Show MoreNew metal ion complexes were synthesized with the general formula; K[PtLCl4], [ReLCl4] and K[ML(Cl)2] where M = Pd(II), Cd(II), Zn(II) and Hg(II), from the Azo ligand (HL) [2-Hydroxy-3-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)-1-naphth aldehyde] (HL) the ligand was synthesized from (2-hydroxy-1-naphthaldehyde) and (5-amino-1,3,4-thiadiazole-2-thiol). The ligand and its metal complexes are characterized by phisco- chemical spectroscopic techniques (FT.IR, UV-Vis and Mass spectra, elemental analysis, molar conductivity, Atomic Absorption, Chloride contain and magnetic susceptibility). The spectral data suggest that the (HL) behaves as a bidentate ligand in all complexes. These studies revealed tetrahedral geometries for all metal complexes
... Show MoreIn this study, the results of x-ray diffraction methods were used to determine the Crystallite size and Lattice strain of Cu2O nanoparticles then to compare the results obtained by using variance analysis method, Scherrer method and Williamson-Hall method. The results of these methods of the same powder which is cuprous oxide, using equations during the determination the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (28.302nm) and the lattice strain (0.03541) of the variance analysis method respectively and for the Williamson-Hall method were the results of the crystallite size (21.678nm) and lattice strain (0.00317) respectively, and Scherrer method which gives the value of c
... Show MoreA new ligand N-(methylcarbamothioyl) acetamide (AMP) was synthesized by reaction of acetyl chloride with adenine. The ligand was characterized by FT-IR, NMR spectra and the elemental analysis. The transition metal complexes of this ligand where synthesize and characterized by UV-Visible spectra, FT-IR, magnetic suscepility, conductively measurement. The general formula [M(AMP)2Cl2], where M+2 = (Mn, Co, Ni, Cu, Zn, Cd, Hg).
Background In recent years, there has been a notable increase in the level of attention devoted to exploring capabilities of nanoparticles, specifically gold nanoparticles AuNPs, within context of modern times. AuNPs possess distinct biophysical properties, as a novel avenue as an antibacterial agent targeting Streptococcus Mutans and Candida Albicans. The aim of this study to create a nano-platform that has the potential to be environmentally sustainable, in addition to exhibiting exceptional antimicrobial properties against Streptococcus Mutans as well as Candida Albicans. Methods this study involved utilization of
silver nanoparticle which synthesized by.