Nowadays, the development of laser devices in the medical field has become large and highly efficient compared to regular surgery. The aim of this work is to design a laser technology system to remove and break up blood clots in the human body, especially in the sensitive areas that pose a threat to his life. This system is characterized by being environmentally friendly, has no side effects on the human body, and is economically inexpensive. The program of Matlab 2019 was used to create an executable program to simulate a pulse system for a new model which is Free Electron Laser (FEL) in any range of wavelength and in this work it is in the ultraviolet range and the electrons energy about 450 MeV and wavelength equal 22.5 nm to remove these clots by breaking the bonds connecting the clots components. The energy, which gives this wavelength is among the short wavelengths that approximate in its action from the magnetic resonance. This program consists of Specific parameters which a simulation to obtain the best values for wavelength, exposure time and pulse energy.
In the present study, MCM-41 was synthesis as a carrier for poorly drugs soluble in water, by the sol-gel technique. Textural and chemical characterizations of MCM-41 were carried out by X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), and thermal gravimetric analysis (TGA). The experimental results were analyzed mesoporous carriers MCM-41. With maximum drug loading efficiency in MCM-41 determined to be 90.74%. The NYS released was prudently studied in simulated body fluid (SBF) pH 7.4 and the results proved that the release of NYS from MCM-41 was (87.79%) after 18 hr. The data of NYS released was found to be submitted a Weibull model with a correlation coefficient of (0.995). The Historical
... Show MoreIn this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo
... Show MoreFuzzy logic is used to solve the load flow and contingency analysis problems, so decreasing computing time and its the best selection instead of the traditional methods. The proposed method is very accurate with outstanding computation time, which made the fuzzy load flow (FLF) suitable for real time application for small- as well as large-scale power systems. In addition that, the FLF efficiently able to solve load flow problem of ill-conditioned power systems and contingency analysis. The FLF method using Gaussian membership function requires less number of iterations and less computing time than that required in the FLF method using triangular membership function. Using sparsity technique for the input Ybus sparse matrix data gi
... Show MoreCommunication has seen a big advancement through ages; concepts, procedures and technologies, it has also seen a similar advancement of language. What unites language and media is the fact that each one of them guides and contributes to the other; media exists and results from language and from the other sign systems, and what strengthens this connection is the symbolic language system, as media helps it by providing knowledge and information. The change that occurred through time must leave a significant trace in the media, for example Diction, which has changed concerning development and growth, also the ways and mediums of media have become manifold and widespread. This change affected the recipient whether it was a reader, listener o
... Show MoreIn this study, the electron coefficients; Mean energy , Mobility and Drift velocity of different gases Ar, He, N2 and O2 in the ionosphere have been calculated using BOLSIG+ program to check the solution results of Boltzmann equation results, and effect of reduced electric field (E/N) on electronic coefficients. The electric field has been specified in the limited range 1-100 Td. The gases were in the ionosphere layer at an altitude frame 50-2000 km. Furthermore, the mean energy and drift velocity steadily increased with increases in the electric field, while mobility was reduced. It turns out that there is a significant and obvious decrease in mobility as a result of inelastic collisions and in addition lit
... Show MoreAn Expression for the transition charge density is investigated
where the deformation in nuclear collective modes is taken into
consideration besides the shell model transition density. The
inelastic longitudinal C2 and C4 form factors are calculated using
this transition charge density for the Ne Mg 20 24 , , Si 28 and S 32
nuclei. In this work, the core polarization transition density is
evaluated by adopting the shape of Tassie model togther with the
derived form of the ground state two-body charge density
distributions (2BCDD's). It is noticed that the core polarization
effects which represent the collective modes are essential in
obtaining a remarkable agreement between the calculated inelastic
longi
Inelastic longitudinal electron scattering form factors have been calculated for isoscaler transition
T = 0 of the (0+ ®2+ ) and (0+ ®4+ ) transitions for the 20Ne ,24Mg and 28Si nuclei. Model
space wave function defined by the orbits 1d5 2 ,2s1 2 and 1d3 2 can not give reasonable result for
the form factor. The core-polarization effects are evaluated by adopting the shape of the Tassie-
Model, together with the calculated ground Charge Density Distribution CDD for the low mass 2s-1d
shell nuclei using the occupation number of the states where the sub-shell 2s is included with an
occupation number of protons (a ) .
ST Alawi, NA Mustafa, Al-Mustansiriyah Journal of Science, 2013
The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w
... Show MoreThis research discussed, the process of comparison between the regression model of partial least squares and tree regression, where these models included two types of statistical methods represented by the first type "parameter statistics" of the partial least squares, which is adopted when the number of variables is greater than the number of observations and also when the number of observations larger than the number of variables, the second type is the "nonparametric statistic" represented by tree regression, which is the division of data in a hierarchical way. The regression models for the two models were estimated, and then the comparison between them, where the comparison between these methods was according to a Mean Square
... Show More