Specific microorganisms can produce bacterial nanocellulose (BNC), with acetic acid bacteria (AAB) being the most active producer. The family Acetobacteraceae includes the obligate aerobic, motile acetic acid bacteria. The BNC has attracted a lot of interest across a wide range of industries, including pharmaceuticals, due to its flexible characteristics, properties, and advantages. The present study was conducted to purify and characterize BNC produced from AAB isolated from apple vinegar. Bacterial nanocellulose was synthesized using a natural date palm liquid medium at pH 6 at 30°C for 8–10 days. The bacterial cellulose produced was then purified using a technique involving 0.1 M sodium hydroxide. To ascertain the surface morphology, size, and form of the BNC membrane, three techniques were used for characterization: X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The results of the XRD analysis confirmed that the BNC particle size ranged between approximately 17.10 and 70.33 nm, while the AFM analysis revealed that the mean diameter of these nanofibers was 26.58 nm. The TEM images clearly showed that the diameters of the BNC fibers ranged between approximately 26-66 nm. The findings of this study reveal that the characterization of the purified BNC using the XRD, AFM, and TEM analyses showed the presence of fibers with varying nanoscale diameters.
In this work the fabrication and characterization of poly(3-hexylthiophene) P3HT-metallic nanoparticles (Ag, Al). Pulsed Laser Ablation (PLA) technique was used to synthesis the nanoparticles in liquid. The Fourier Transformer Infrared (FTIR) for all samples indicate the chemical interaction between the polymer and the nanoparticles. Scanning Electron Microscopic (SEM) analysis showed the particle size for P3HT-AgNps samples between 44.50 nanometers as well the spherical structure. While for P3HT-AlNps samples was flakes shape. Energy Dispersive X-ray (EDX) spectra show the existing of amount of metallic nanoparticles.
Isradipine belong to dihydropyridine (DHP) class of calcium channel blockers (CCBs). It is used in the treatment of hypertension, angina pectoris, in addition to Parkinson disease. It goes under the BCS class II drug (low solubility-high permeability). The drug will experience extensive first-pass metabolism in liver, therefore, oral bio-availability will be approximately15 to 24 %.
The aim of this study was to formulate and optimize a stable nanoparticles of a highly hydrophobic drug, isradipine by anti-solvent microprecipitation Method to achieve the higher in vitro dissolution rate, so that it will be absorbed by intestinal lymphatic transport in order to avoid hepatic first-pass metabolism&nbs
... Show MoreFelodipine is a calcium-channel blocker with low aqueous solubility and bioavailability. Lipid dosage forms are attractive delivery systems for such hydrophobic drug molecules. Nanoemulsion (NE) is one of the popular methods that has been used to solve the dispersibility problems of many drugs. Felodipine was formulated as a NE utilizing oleic acid as an oil phase, tween 80 and tween 60 as surfactants and ethanol as a co-surfactant. Eight formulas were prepared, and different tests were performed to ensure the stability of the NEs, such as particle size, polydispersity index, zeta potential, dilution test, drug content, viscosity and in-vitro drug release. Result
... Show MoreThe influence of annealing on quaternary compound Ag0.9Cu0.1InSe2 (ACIS) thin film is considered a striking semiconductor for second-generation solar cells. The film deposited by thermal evaporation with a thickness of about 700 nm at R.T and vacuum annealing at temperatures (373,473) K for 1 hour. It was deposited in a vacuum of 4.5*10-5 Torr on a glass substrate. From XRD and AFM analysis, it is evident that Ag0.9Cu0.1InSe2 films are polycrystalline in nature, having ideal stoichiometric composition. Structural analysis indicated that annealing the films following the deposition resulted in the increasing polycrystalline phase with the preferred orientation along (112) direction. , increasing crystallite size and average grain size
... Show MoreIn this study, polymeric ultrafiltration (UF) membranes were prepared by phase inversion method to obtain both antibacterial and organic antifouling properties. The membranes were cast from a solution of polyvinylidene fluoride (PVDF) and formative silver (Ag) nanoparticles were successfully immobilized on a polymer. This was done using a solvent N, N-dimethylformamide (DMF) which is a solvent for the PVDF polymer meanwhile it is a reducing agent for silver ion. The effect of silver nanoparticles additives on the performance of polymeric ultrafiltration membrane was verified. Chemical composition and morphology of the surfaces of the membranes were characterized by Fourier transform infrared spectroscopy
... Show MoreThe thermal method was used to produce silicoaluminophosphate (SAPO-11) with different amounts of carbon nanotubes (CNT). XRD, nitrogen adsorption-desorption, SEM, AFM, and FTIR were used to characterize the prepared catalyst. It was discovered that adding CNT increased the crystallinity of the synthesize SAPO-11 at all the temperatures which studied, wile the maximum surface area was 179.54 m2/g obtained at 190°C with 7.5 percent of CNT with a pore volume of 0.317 cm3/g ,and with nano-particles with average particle diameter of 24.8 nm, while the final molar composition of the prepared SAPO-11 was (Al2O3:0.93P2O5:0.414SiO2).
Coumarin derivatives have shown different biological activities, such as antifungal, antibacterial antiinflammatory, and antioxidant activities, besides antibiotic resistance modulating effects, and anti-HIV, hepatoprotective, and antitumor effect. So, new coumarin derivatives (hydrazones and an amide) were synthesized through multisteps reactions. All the synthesized target compounds were characterized by FT-IR spectroscopy, 1HNMR analysis. The compounds then evaluated for their anti-bacterial activity by means of well-diffusion method against two gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae) and two gram-negative bacteria (E.coli and Pseudomonas aeruginosa). The highest activity was demonstr
... Show MoreSelexipag is an orally selective long-acting prostacyclin receptor agonist, which indicated for the treatment of pulmonary arterial hypertension. It is practically insoluble in water ( class II, according to BCS). This work aims to prepare and optimized Selexipag nanosuspensions to achieve an enhancement in the in vitro dissolution rate. The solvent antisolvent precipitation method was used for the production of nanosuspension, and the effect of formulation parameters (stabilizer type, drug: stabilizer ratio, and use of co-stabilizer) and process parameter (stirring speed) on the particle size and polydispersity index were studied. SLPNS prepared with Soluplus® as amain stabilizer (F15) showed the smallest particle size 47nm wi
... Show MoreThis study was carried out to prepare and characterize domperidone nanoparticles to enhance solubility and the release rate. Domperidone is practically insoluble in water and has low and an erratic bioavailability range from 13%-17%. The domperidone nanoparticles were prepared by solvent/antisolvent precipitation method at different polymer:drug ratios of 1:1 and 2:1 using different polymers and grades of poly vinyl pyrolidone, hydroxy propyl methyl cellulose and sodium carboxymethyl cellulose as stabilizers. The effect of polymer type, ratio of polymer:drug, solvent:antisolvent ratio, stirring rate and stirring time on the particle size, were investigated and found to have a significant (p? 0.05) effect on particle size. The best formul
... Show MoreThe increasing requirement and use of dental implant treatments has rendered dental implantology indispensable in dentistry. The aim of this study is to determine the optimum concentration of calcium silicate to be incorporated into a polyetherketoneketone (PEKK) matrix used as an implant material to enhance the bioactivity and mechanical properties of the composite compared with unmodified PEKK. In this study, different weight percentage (wt%) of micro-calcium silicate (m-CS) is incorporated into PEKK with ethanol as a binder. Subsequently, the mixture is dried in a forced convection oven at 120°C and poured into customized molds to fabricate a bioactive composite via compression molding (310°C, 15 MPa, and 20 min holding time
... Show More