Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an SVM-based DDoS detection model shows superior performance. This comparative analysis offers a valuable insight into the development of efficient and accurate techniques for detecting DDoS attacks in SDN environments with less complexity and time.
Information centric networking (ICN) is the next generation of internet architecture with its ability to provide in-network caching that make users retrieve their data efficiently regardless of their location. In ICN, security is applied to data itself rather than communication channels or devices. In-network caches are vulnerable to many types of attacks, such as cache poisoning attacks, cache privacy attacks, and cache pollution attacks (CPA). An attacker floods non-popular content to the network and makes the caches evict popular ones. As a result, the cache hit ratio for legitimate users will suffer from a performance degradation and an increase in the content’s retrieval latency. In this paper, a popularity variation me
... Show MoreAfter the year 2003, Iraq went through multiple waves of violence and at different levels on the security, intellectual, political and social levels. Behind that stood several motives and incentives to enable violence that represented the first axis of research, the most important of which was the political motives that circulated an atmosphere that politics against society and transformed power into a field of political brutality against the individual and the group at once. There are also cultural, intellectual, media and economic motives such as weak cultural independence, poverty, marginalization, unemployment and want, and the absence of a media discourse that rejects violence but incites it, on the other ha
... Show MoreA new test system for detecting environment carcinogenes and/or mutagenes and their adversary It has been induced. One hundred and fifty mutants were isolated from the basidiomycete fungus Coprinus cinereus which were resistant to guanine analogue S- az.aguanine .All the spontaneous and induced with UV light origin mutants were isolated from the wild type strains Bc9/6.6 and Hd5.5
.These mutants were te ted on selective medium containing different
concentrations of the analogue and also to their ability to usc purine bases and their degredated &nbs
... Show MoreInternal Audit is one of the most important backers of corporate governance, the researcher expanded his interest in this subject to examine the efficiency of Internal Auditors at the Arab Bank and its branches in Jordan to achieve Accountability which enhances the Corporate Governance and to identify the effect of the International Internal Audit Standards in strengthening the role of Internal Auditors in Accountability, and the effect of Attribute and Performance Standards in Accountability. The researcher applied descriptive analysis method to define the role of Internal Audit in the Arab Bank in achieving one of the basic principles of Corporate Governance assimilated in Accountability. The researcher’s sources include
... Show MoreIn cognitive radio networks, there are two important probabilities; the first probability is important to primary users called probability of detection as it indicates their protection level from secondary users, and the second probability is important to the secondary users called probability of false alarm which is used for determining their using of unoccupied channel. Cooperation sensing can improve the probabilities of detection and false alarm. A new approach of determine optimal value for these probabilities, is supposed and considered to face multi secondary users through discovering an optimal threshold value for each unique detection curve then jointly find the optimal thresholds. To get the aggregated throughput over transmission
... Show MoreThe current research aims to detect the level of suicidal tendencies among secondary school students in terms of gender and educational stage (intermediate school students and high school students). The researcher adopted Al Hafeez's (2017) scale for suicidal tendencies, it consists of (57) items including six domains, namely: suicidal ideation, social motives for suicide, tendency to self-harm, desire for death, indifference and pessimism about life, willingness to commit suicide. The scale was modified to be (42) items after it was exposed to a group of experts. The scale was applied to a sample of (200) male and female students from secondary schools in Baghdad Governorate (Karkh - Rusafa) for the academic year 2021-2022. The results
... Show MoreSocial Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation. Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annota
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show More
Abstract
The net profit reported in the annual financial statements of the companies listed in the financial markets, is considered one of the Sources of information relied upon by users of accounting information in making their investment decisions. At the same time be relied upon in calculating the bonus (Incentives) granted to management, therefore the management of companies to manipulate those numbers in order to increase those bonuses associated to earnings, This practices are called earnings management practices. the manipulation in the figures of earnings by management will mislead the users of financial statements who depend on reported earnings in their deci
... Show MoreThe phenomena of Dust storm take place in barren and dry regions all over the world. It may cause by intense ground winds which excite the dust and sand from soft, arid land surfaces resulting it to rise up in the air. These phenomena may cause harmful influences upon health, climate, infrastructure, and transportation. GIS and remote sensing have played a key role in studying dust detection. This study was conducted in Iraq with the objective of validating dust detection. These techniques have been used to derive dust indices using Normalized Difference Dust Index (NDDI) and Middle East Dust Index (MEDI), which are based on images from MODIS and in-situ observation based on hourly wi