Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an SVM-based DDoS detection model shows superior performance. This comparative analysis offers a valuable insight into the development of efficient and accurate techniques for detecting DDoS attacks in SDN environments with less complexity and time.
Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation. Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annota
... Show MoreIn cognitive radio networks, there are two important probabilities; the first probability is important to primary users called probability of detection as it indicates their protection level from secondary users, and the second probability is important to the secondary users called probability of false alarm which is used for determining their using of unoccupied channel. Cooperation sensing can improve the probabilities of detection and false alarm. A new approach of determine optimal value for these probabilities, is supposed and considered to face multi secondary users through discovering an optimal threshold value for each unique detection curve then jointly find the optimal thresholds. To get the aggregated throughput over transmission
... Show MoreSoftware-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show More
Abstract
The net profit reported in the annual financial statements of the companies listed in the financial markets, is considered one of the Sources of information relied upon by users of accounting information in making their investment decisions. At the same time be relied upon in calculating the bonus (Incentives) granted to management, therefore the management of companies to manipulate those numbers in order to increase those bonuses associated to earnings, This practices are called earnings management practices. the manipulation in the figures of earnings by management will mislead the users of financial statements who depend on reported earnings in their deci
... Show MoreOntology is a system for classifying human knowledge according to its objective characteristics and hierarchical relations through building clusters or that bear common characteristics. In digital environments, it is a mechanism that helps regulate a vast amount of information by achieving a complete link between sub-thematic concepts and their main assets. The purpose of this study is to survey the previously conducted studies that use ontology in organizing digital data on social networking sites, such as the search engines Yahoo, Google, and social networks as Facebook and their findings. Results have shown that all these studies invest ontology for the purpose of organizing digital content data, especially on
... Show MoreTo date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip
... Show MoreThe phenomena of Dust storm take place in barren and dry regions all over the world. It may cause by intense ground winds which excite the dust and sand from soft, arid land surfaces resulting it to rise up in the air. These phenomena may cause harmful influences upon health, climate, infrastructure, and transportation. GIS and remote sensing have played a key role in studying dust detection. This study was conducted in Iraq with the objective of validating dust detection. These techniques have been used to derive dust indices using Normalized Difference Dust Index (NDDI) and Middle East Dust Index (MEDI), which are based on images from MODIS and in-situ observation based on hourly wi
In the present work the nuclear structure of even-even
Ba(A=130-136, Z=56) isotopes was studied using (IBM-1). The reduced matrix element of magnetic dipole moment (11 II f(Ml) II/,) and the magnetic dipole transitions probability B(M 1) were calculated
for one and two bodies of even-even Ba(A=lJ0-136, Z=56). A good
agreement had been found of present with available experimental data.
This research aims to show the most important approaches applicable in forming the accounting standards , the importance approaches used to formulate local accounting standards & the need to cancel or develop the unified accounting system in Iraq besides activate the local auditing & accounting standards council to issue accounting standards able to save the relevance & Reliable accounting information that serve the decisions of stockholders and others of stakeholders in the incorporate companies , especially the companies listed in the Iraq securities exchange , So this study based partially on analyzing the questionnaire form which has been designed to inquiry the specialists and experts opinion about the accoun
... Show More