The purpose of this study is to avoid delays and cost changes that occur in emergency reconstruction projects especially in post disaster circumstances. This study is aimed to identify the factors that affect the real construction period and the real cost of a project against the estimated period of construction and the estimated cost of the project. The case study is related to the construction projects in Iraq. Thirty projects in different areas of construction in Iraq were selected as a sample for this study. Project participants from the projects authorities provided data about the projects through a data collection distributed survey made by the authors. Mathematical data analysis was used to construct a model to predict change in time and cost of the projects before the start of the construction. The artificial neural networks analysis was selected as a mathematical approach. The most important factors identified leading to schedule delays and cost increase were contractor failure, redesigning of designs/plans and change orders, security issues, selection of low-price bids, weather factors, and owner failures. The use of the ANN model for such a problem is expected to be an effective method for modeling this complicated phenomenon.
Many of the proposed methods introduce the perforated fin with the straight direction to improve the thermal performance of the heat sink. The innovative form of the perforated fin (with inclination angles) was considered. Present rectangular pin fins consist of elliptical perforations with two models and two cases. The signum function is used for modeling the opposite and the mutable approach of the heat transfer area. To find the general solution, the degenerate hypergeometric equation was used as a new derivative method and then solved by Kummer's series. Two validation methods (previous work and Ansys 16.0‐Steady State Thermal) are considered. The strong agreement of the validation results (0.3
The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreAn electrolytic process for the removal of Zn(II) from aqueous solution using a parallel amalgamated copper screens cathode operated in the flow through mode is proposed. The current-potential curves recorded at a rotating amalgamated copper disc electrode were used to determine diffusion coefficient of Zn(II). The performance of electrolytic reactor was investigated by using different flow rates at initial zinc ion concentration(48 mg/L). Taking into account the residential Zn(II) concentration, the best results were obtained for cathode potential of (-1.35 V vs. SCE) at flow rate (320 L/h). Zinc ion concentration was found to decrease from 48 mg/L to 1 mg/L during 120 min. of electrolysis. The experimental data are well correlate
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThe hydroconversion of Iraqi light straight run naphtha was studied on zeolite catalyst. 0.3wt.%Pt/HMOR catalyst was prepared locally and used in the present work. The hydroconversion performed on a continuous fixed-bed laboratory reaction unit. Experiments were performed in the temperature range of 200 to 350°C, pressure range of 3 to 15 bars, LHSV range of 0.5-2.5h-1, and the hydrogen to naphtha ratio of 300.
The results show that the hydroconversion of Iraqi light straight naphtha increases with increase in reaction temperature and decreases with increase in LHSV.
High octane number isomers were formed at low temperature of 240°C. The selectivity of hydroisomerization improved by increasing reaction pressu
... Show MoreMany conservative sphincter-preserving procedures had been described to be effective in
healing of anal fistula without excision or de roofing.
Objective: To verify the outcome of mere photocoagulation of the fistula tract on healing of low anal
fistula.
Materials and Methods: Using 810nm diode laser, the tracts of low anal fistulae in a cohorts of six male
patients (mean age of 32 yr) had been photocoagulated by retrograde application of laser light through an
orb tip optical fiber threaded in to the tract. Swabs for culture and sensitivity testing were obtained before
and after laser application. Patients were followed up regularly to announce fistula healing.
Results: Mean laser exposure time was 6.6 min., mean
Adsorption techniques are widely used to remove organics pollutants from waste water particularly, when using low cost adsorbent available in Iraq. Al-Khriet powder which was found in legs of Typha Domingensis is used as bio sorbent for removing phenolic compounds from aqueous solution. The influence of adsorbent dosage and contact time on removal percentage and adsorb ate amount of phenol and 4- nitro phenol onto Al-Khriet were studied. The highest adsorption capacity was for 4-nitrophenol 91.5% than for phenol 82% with 50 mg/L concentration, 0.5 gm. dosage of adsorbent and pH 6 under a batch condition. The experimental data were tested using different isotherm models. The results show that Freundlich model resulted in the best fit also
... Show More