Preferred Language
Articles
/
TBbiX4cBVTCNdQwC6Ehj
Enhancing Sparse Adjacency Matrix for Community Detection in Large Networks
...Show More Authors

Crossref
View Publication
Publication Date
Thu Sep 15 2022
Journal Name
Knowledge And Information Systems
Multiresolution hierarchical support vector machine for classification of large datasets
...Show More Authors

Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Sep 30 2001
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Two Phase Flow in Large Diameter Pipe
...Show More Authors

View Publication Preview PDF
Publication Date
Wed Mar 15 2023
Journal Name
Journal Of The Turkish-german Gynecological Association
Obstetric and neonatal complications in large for gestational age pregnancy with late gestational diabetes
...Show More Authors

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of The College Of Education For Women
The Quantitative Analysis for Road networks in Karbala Governorate
...Show More Authors

The road networks is considered to be one of the determinants that controls to specify the areas of human activities, which it depend on to specify the arrival cost , in addition it is useful to achieve the connectivity for interaction and human activities , and shorten the distance and time between the population and places of service. The density of the road network in any space directly affected by the density of population and the type of economic activities and administrative functions performed by the space. On this basis, the subject of this study is reflected in the quantitative analysis of the roads network in the Governorate of Karbala. The study consists the quantitative analysis for the roads network and the Urban Nodes in th

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2022
Journal Name
Expert Systems With Applications
Novel large scale brain network models for EEG epileptic pattern generations
...Show More Authors

Background: Unlike normal EEG patterns, the epileptiform abnormal pattern is characterized by different mor phologies such as the high-frequency oscillations (HFOs) of ripples on spikes, spikes and waves, continuous and sporadic spikes, and ploy2 spikes. Several studies have reported that HFOs can be novel biomarkers in human epilepsy study. S) Method: To regenerate and investigate these patterns, we have proposed three large scale brain network models (BNM by linking the neural mass model (NMM) of Stefanescu-Jirsa 2D (S-J 2D) with our own structural con nectivity derived from the realistic biological data, so called, large-scale connectivity connectome. These models include multiple network connectivity of brain regions at different

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Dec 17 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Expression of matrix metalloproteinase-2 in the extracellular matrix of osseointegrated and diseased implants
...Show More Authors

Background: Recently with improvement of dental implantology science, osseointegrated implants show a considerable durability, however; failures are not completely avoidable. Matrix metalloproteinase-2 (MMP-2) expression is disturbed in many pathological conditions such as peri-implantitis and periodontitis. This study was carried out to investigate the tissue expression of MMP-2 in the extracellular matrix of osseointegrated and diseased implants. Subjects and methods: Gingival biopsies were collected from six patients having osseointegrated or working implants and twenty with diseased or non osseointegrated implants and (6) controls having no implants. In situ hybridization technique was used to analyze the changes in immunoreactivity of

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Detection of Methamphetamine using Nanobentonite as a Novel Solid Phase Extraction Column Matrix Assisted with Gas Chromatography- Mass Spectroscopy
...Show More Authors

          This study was done to evaluate a new technique to determine the presence of methamphetamine in the hair using nano bentonite-based adsorbent as the filler of extraction column. The state of the art of this study was based on the presence of silica in the nano bentonite that was assumed can interact with methamphetamine. The hair used was treated using methanol to extract the presence of methamphetamine, then it was continued by sonicating the hair sample. Qualitative analysis using Marquish reagent was performed to confirm the presence of methamphetamine in the isolate.The hair sample that has been taken in a different period confirmed that this current developing method can be used to analyzed methamphetamine. This m

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Intelligent Systems And Internet Of Things
Enhancing Convolutional Neural Network for Image Retrieval
...Show More Authors

With the continuous progress of image retrieval technology, the speed of searching for the required image from a large amount of image data has become an important issue. Convolutional neural networks (CNNs) have been used in image retrieval. However, many image retrieval systems based on CNNs have poor ability to express image features. Content-based Image Retrieval (CBIR) is a method of finding desired images from image databases. However, CBIR suffers from lower accuracy in retrieving images from large-scale image databases. In this paper, the proposed system is an improvement of the convolutional neural network for greater accuracy and a machine learning tool that can be used for automatic image retrieval. It includes two phases

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref