In this paper, the Monte-Carlo simulation method was used to compare the robust circular S estimator with the circular Least squares method in the case of no outlier data and in the case of the presence of an outlier in the data through two trends, the first is contaminant with high inflection points that represents contaminant in the circular independent variable, and the second the contaminant in the vertical variable that represents the circular dependent variable using three comparison criteria, the median standard error (Median SE), the median of the mean squares of error (Median MSE), and the median of the mean cosines of the circular residuals (Median A(k)). It was concluded that the method of least squares is better than the methods of the robust circular S method in the case that the data does not contain outlier values because it was recorded the lowest mean criterion, mean squares error (Median MSE), the least median standard error (Median SE) and the largest value of the criterion of the mean cosines of the circular residuals A(K) for all proposed sample sizes (n=20, 50, 100). In the case of the contaminant in the vertical data, it was found that the circular least squares method is not preferred at all contaminant rates and for all sample sizes, and the higher the percentage of contamination in the vertical data, the greater the preference of the validity of estimation methods, where the mean criterion of median squares of error (Median MSE) and criterion of median standard error (Median SE) decrease and the value of the mean criterion of the mean cosines of the circular residuals A(K) increases for all proposed sample sizes. In the case of the contaminant at high lifting points, the circular least squares method is not preferred by a large percentage at all levels of contaminant and for all sample sizes, and the higher the percentage of the contaminant at the lifting points, the greater the preference of the validity estimation methods, so that the mean criterion of mean squares of error (Median MSE) and criterion of median standard error (Median SE) decrease, and the value of the mean criterion increases for the mean cosines of the circular residuals A(K) and for all sample sizes.
As one type of resistance furnace, the electrical tube furnace (ETF) typically experiences input noise, measurement noise, system uncertainties, unmodeled dynamics and external disturbances, which significantly degrade its temperature control performance. To provide precise, and robust temperature tracking performance for the ETF, a robust composite control (RCC) method is proposed in this paper. The overall RCC method consists of four elements: First, the mathematical model of the ETF system is deduced, then a state feedback control (SFC) is constructed. Third, a novel disturbance observer (DO) is designed to estimate the lumped disturbance with one observer parameter. Moreover, the stability of the closed loop system including controller
... Show MoreThe goal of this research is to develop a numerical model that can be used to simulate the sedimentation process under two scenarios: first, the flocculation unit is on duty, and second, the flocculation unit is out of commission. The general equation of flow and sediment transport were solved using the finite difference method, then coded using Matlab software. The result of this study was: the difference in removal efficiency between the coded model and operational model for each particle size dataset was very close, with a difference value of +3.01%, indicating that the model can be used to predict the removal efficiency of a rectangular sedimentation basin. The study also revealed
The current paper proposes a new estimator for the linear regression model parameters under Big Data circumstances. From the diversity of Big Data variables comes many challenges that can be interesting to the researchers who try their best to find new and novel methods to estimate the parameters of linear regression model. Data has been collected by Central Statistical Organization IRAQ, and the child labor in Iraq has been chosen as data. Child labor is the most vital phenomena that both society and education are suffering from and it affects the future of our next generation. Two methods have been selected to estimate the parameter
... Show MoreThis paper discusses the Sums of Squares of “m” consecutive Woodall Numbers. These discussions are made from the definition of Woodall numbers. Also learn the comparability of Woodall numbers and other special numbers. An attempt to communicate the formula for the sums of squares of ‘m’ Woodall numbers and its matrix form are discussed. Further, this study expresses some more correlations between Woodall numbers and other special numbers.
The discussion in this paper gives several theorems and lemmas on the Sums of Squares of consecutive Carol Numbers. These theorems are proved by using the definition of carol numbers and mathematical induction method. Here the matrix form and the recursive form of sum of squares of consecutive Carol numbers is also given. The properties of the Carol numbers are also derived.
Statistical methods and statistical decisions making were used to arrange and analyze the primary data to get norms which are used with Geographic Information Systems (GIS) and spatial analysis programs to identify the animals production and poultry units in strategic nutrition channels, also the priorities of food insecurity through the local production and import when there is no capacity for production. The poultry production is one of the most important commodities that satisfy human body protein requirements, also the most important criteria to measure the development and prosperity of nations. The poultry fields of Babylon Governorate are located in Abi Ghareg and Al_Kifil centers according to many criteria or factors such as the popu
... Show MoreThis research aims to review the importance of estimating the nonparametric regression function using so-called Canonical Kernel which depends on re-scale the smoothing parameter, which has a large and important role in Kernel and give the sound amount of smoothing .
We has been shown the importance of this method through the application of these concepts on real data refer to international exchange rates to the U.S. dollar against the Japanese yen for the period from January 2007 to March 2010. The results demonstrated preference the nonparametric estimator with Gaussian on the other nonparametric and parametric regression estima
... Show More<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show More
This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.