The transportation model is a well-recognized and applied algorithm in the distribution of products of logistics operations in enterprises. Multiple forms of solution are algorithmic and technological, which are applied to determine the optimal allocation of one type of product. In this research, the general formulation of the transport model by means of linear programming, where the optimal solution is integrated for different types of related products, and through a digital, dynamic, easy illustration Develops understanding of the Computer in Excel QM program. When choosing, the implementation of the form in the organization is provided.
This paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different type
... Show MoreIn high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri
... Show MoreThis paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
This study delves into the properties of the associated act V over the monoid S of sinshT. It examines the relationship between faithful, finitely generated, and separated acts, as well as their connections to one-to-one and onto operators. Additionally, the correlation between acts over a monoid and modules over a ring is explored. Specifically, it is established that functions as an act over S if and only if functions as module, where T represents a nilpotent operator. Furthermore, it is proved that when T is onto operator and is finitely generated, is guaranteed to be finite-dimensional. Prove that for any bounded operator the following, is acting over S if and only if is a module where T is a nilpotent operator, is a
... Show MoreSignal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks
... Show MoreRutting in asphalt mixtures is a very common type of distress. It occurs due to the heavy load applied and slow movement of traffic. Rutting needs to be predicted to avoid major deformation to the pavement. A simple linear viscous method is used in this paper to predict the rutting in asphalt mixtures by using a multi-layer linear computer programme (BISAR). The material properties were derived from the Repeated Load Axial Test (RLAT) and represented by a strain-dependent axial viscosity. The axial viscosity was used in an incremental multi-layer linear viscous analysis to calculate the deformation rate during each increment, and therefore the overall development of rutting. The method has been applied for six mixtures and at different tem
... Show Moreالأثر V بالنسبة إلى sinshT و خواصه قد تم دراسته في هذا البحث حيث تم دراسة علاقة الأثر المخلص والاثر المنتهى التولد والاثر المنفصل وربطها بالمؤثرات المتباينة حيث تم بهنة العلاقات التالية ان الاثر اذا وفقط اذا مقاس في حالة كون المؤثر هو عديم القوة وكذلك في حالة كون المؤثر شامل فان الاثر هو منتهي التولد اي ان الغضاء هو منتهي التولد وايضا تم برهن ان الاثر مخلص لكل مؤثر مقيد وك\لك قد تم التحقق من انه لاي مؤثر مقي
... Show MoreIn this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl
... Show MoreAlgorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.