Reducing the drag force has become one of the most important concerns in the automotive industry. This study concentrated on reducing drag through use of some external modifications of passive flow control, such as vortex generators, rear under body diffuser slices and a rear wing spoiler. The study was performed at inlet velocity (V=10,20,30,40 m/s) which correspond to an incompressible car model length Reynolds numbers (Re=2.62×105, 5.23×105, 7.85×105 and 10.46×105), respectively and we studied their effect on the drag force. We also present a theoretical study finite volume method (FVM) of solving Reynolds-averaged Navier-tokes equations (RANS) using a realizable k–epsilon (k-ε) turbulence model, conducted on a car, model KIA Pride, which is popular in Iraq and Iran. All computational analysis and modifications were carried out using the ANSYS Fluent 19 computational fluid dynamics (CFD) software and SOLIDWORKS 2018 modeller. The drag coefficient of the analysed car was found to be 0.34 and the results show that the drag can be reduced up to1.73% using vortex generators, up to 3.05% using a rear wing spoiler and up to 2.47% using rear under-body diffuser slices modifications, whereas it may be reduced up to 3.8% using all previous modifications together.
In the last few years, the Internet of Things (IoT) is gaining remarkable attention in both academic and industrial worlds. The main goal of the IoT is laying on describing everyday objects with different capabilities in an interconnected fashion to the Internet to share resources and to carry out the assigned tasks. Most of the IoT objects are heterogeneous in terms of the amount of energy, processing ability, memory storage, etc. However, one of the most important challenges facing the IoT networks is the energy-efficient task allocation. An efficient task allocation protocol in the IoT network should ensure the fair and efficient distribution of resources for all objects to collaborate dynamically with limited energy. The canonic
... Show MoreListeria monocytogenes represents a critical foodborne pathogen causing listeriosis, a severe infection with mortality rates of 20- 30%. This comprehensive review integrates cutting-edge research from 2015-2024 with Iraqi epidemiological data to address significant knowledge gaps in regional surveillance and global comparative analysis. Recent discoveries include five novel Listeria species in 2021, revolutionary whole genome sequencing (WGS) surveillance systems, and advanced understanding of RNA-mediated regulation. Iraqi prevalence data reveals concerning patterns with rates ranging from 3.5% to 93.8% across different sample types, substantially higher than global averages. Critically, Iraqi isolates demonstrate alarming antibiotic resis
... Show MoreTyphoid fever (TF) is a systemic infection caused by Salmonella Typhi (Salmonella Enterica) transmitted through contaminated water, food, or contact with infected individuals. In various infectious diseases, blood viscosity (BV) is affected by changes in hemoglobin concentrations and acute phase reactants. Inflammatory responses can lead to elevated plasma protein levels and further affect BV. This study aimed to investigate BV changes in patients with acute TF. A cross-sectional study was performed involving 55 patients with acute TF compared to 38 healthy controls. BV and inflammatory parameters were measured in both groups. TF patients showed reduced blood cells compared to healthy controls (p=0.001). Additionally, plasma total protein (
... Show MoreZG Abdulrazaq, MR Younus, Nasaq, 2023
In this paper, we have examined the effectiveness exchange of optical vorticity via three-wave mixing (TWM) technique in a four-level quantum dot (QD) molecule by means of the electron tunneling effect. Our analytical analysis demonstrates that the TWM procedure can result in the production of a new weak signal beam that may be absorbed or amplified within the QD molecule. We have taken into account the electron tunneling as well as the relative phase of the applied lights to assess the absorption and dispersion characteristics of the newly generated light. We have discovered that the slow light propagation and signal amplification can be achieved. Our results show that the exchange o