In This paper, CuO thin films having different thickness (250, 300 , 350 and 400) nm were deposited on glass substrates by thermal vacuum evaporator. The thermal oxidation of this evaporated film was done in heated glass at temperature (300 in air at one hour. The study of X-ray diffraction investigated all the exhibit polycrystalline nature with monoclinic crystal structure include uniformly grains. Thin film’s internal structure topographical and optical properties. Furthermore, the crystallization directions of CuO (35.54 , 38.70 ) can be clearly observed through an X-ray diffraction analysis XRD, Atomic Force Microscope AFM (topographic image) showed that the surface Characteristics , thin films crystals grew with increases in either the different thickness, also , the grain size increased in rang (14.65-19.39) nm. The optical properties concerning the absorption and transmission spectra were studies for prepared thin films. UV-Vis measurement spectra showed that ultraviolet (UV) transmittance intensity decreased with increases thickness, the energy band gap decreased from (1.62 to1.48) eV when the thickness varying from 250 to 400 nm
This study was aimed to assess the efficiency of N.oleander to remove heavy metals such as Copper (Cu) from wastewater. A toxicity test was conducted outdoor for 65-day to estimate the ability of N.oleander to tolerate Cu in synthetic wastewater. Based on a previous range-finding test, five concentrations were used in this test (0, 50, 100, 300, 510 mg/l). The results showed that maximum values of removal efficiency was found 99.9% on day-49 for the treatment 50 mg/l. Minimum removal efficiency was 94% day-65 for the treatment of 510 mg/l. Water concentration was within the permissible limits of river conservation and were 0.164 at day-35 for the 50 mg/l treatment, decreased thereafter until the end of the observation, and 0.12 at d
... Show MoreCastellated columns are structural members that are created by breaking a rolled column along the center-line by flame after that rejoining the equivalent halves by welding such that for better structural strength against axial loading, the total column depth is increased by around 50 percent. The implementation of these institutional members will also contribute to significant economies of material value. The main objectives of this study are to study the enhancement of the load-carrying capacity of castellated columns with encasement of the columns by Reactive Powder Concrete (RPC) and lacing reinforcement, and serviceability of the confined castellated columns. The Castellated columns with RPC and Lacing Reinforcement improve com
... Show MorePolyaniline nanofibers (PAni-NFs) have been synthesized under various concentrations (0.12, 0.16, and 0.2 g/l) of aniline and different times (2h and 3 h) by hydrothermal method at 90°C. Was conducted with the use of X-ray diffraction (XRD), Fourier Transform Infrared spectra (FTIR), Ultraviolet-Visible (UV-VIS) absorption spectra, Thermogravimetric Analysis (TGA), and Field Emission-Scanning Electron Microscopy (FE-SEM). The X-ray diffraction patterns revealed the amorphous nature of all the produced samples. FE-SEM demonstrated that Polyaniline has a nanofiber-like structure. The observed typical peaks of PAni were (1580, 1300-1240, and 821 cm-1 ), analyzed by the chemical bonding of the formed PAni through FTIR spectroscopy. Also, tests
... Show MoreCopper nanoparticles (CuNPs) were prepared with different diameters by sonoelectrodeposition technique using Electrodeposition process coupled with high-power ultrasound horn (Sonoelectrodeposition). The particle diameter of the CuNPs was adjusted by varying CuSO4 solution acidity (pH) and current density. The morphology and structure of the CuNPs were examined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the size of the produced copper nanoparticles ranged between 22 to 77 nm, where the diameter of CuNPs increases with reduction the solution acidity from 0.5 to 1.5 pH and increasing the current density of the deposition from 100 to 400 nm. Finally the produced CuNPs were pressed to fabricate disc
... Show MoreA polycrystalline CdTefilms have been prepared by thermal evaporation technique on glass substrate at room temperature. The films thickness was about700±50 nm. Some of these films were annealed at 573 K for different duration times (60, 120 and 180 minutes), and other CdTe films followed by a layer of CdCl2 which has been deposited on them, and then the prepared CdTe films with CdCl2 layer have been annealed for the same conditions. The structures of CdTe films without and with CdCl2 layer have been investigated by X-ray diffraction. The as prepared and annealed films without and with CdCl2 layer were polycrystalline structure with preferred orientation at (111) plane. The better structural pr
... Show MoreThe physical, the thermal and the mechanical properties of Nano-composites, that consisted of Polyprime EP epoxy that reinforced by multi-walled carbon nanotubes (MWCNTs), have been studied. Various loading ratios, 0.1, 0.5, and 1 wt. %of MWCNT shave been infused into epoxy by a magnetic stirrer and then the hardener mixed with the mthat supplied with the epoxy. All sample shave been cutting using CNC machine. Tensile test, three-point bending, hardness tests, lee's disk, differential scanning calorimetry, water absorption and dielectric and electrical conductivity test were utilized on unfilled, MWCNT-filled epoxy to identify the loading effect on the properties of materials. Scanning electron microscopy (SEM) was used to determine the
... Show More