Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postponement of delay of interim payments is at the forefront of delay factors caused by the employer’s decision. Even the least one is to leave the job site caused by the contractor’s second part of the contract, the repeated unjustified stopping of the work at the site, without permission or notice from the client’s representatives. The developed model was applied to about 97 projects and used as a prediction model. The decision tree model shows higher accuracy in the prediction.
We aimed to obtain magnesium/iron (Mg/Fe)-layered double hydroxides (LDHs) nanoparticles-immobilized on waste foundry sand-a byproduct of the metal casting industry. XRD and FT-IR tests were applied to characterize the prepared sorbent. The results revealed that a new peak reflected LDHs nanoparticles. In addition, SEM-EDS mapping confirmed that the coating process was appropriate. Sorption tests for the interaction of this sorbent with an aqueous solution contaminated with Congo red dye revealed the efficacy of this material where the maximum adsorption capacity reached approximately 9127.08 mg/g. The pseudo-first-order and pseudo-second-order kinetic models helped to describe the sorption measure
Experimental programs based test results has been used as a means to find out the response of individual elements of structure. In the present study involves investigated behavior of five reinforced concrete deep beams of dimension (length 1200 x height 300 x width150mm) under two points concentrated load with shear span to depth ratio of (1.52), four of these beams with hallow core and
retrofit with carbon fiber reinforced polymer CFRP (with single or double or sides Strips). Two shapes of hallow are investigated (circle and square section) to evaluated the response of beams in case experimental behavior. Test on simply supported beam was performed in the laboratory & loaddeflection, strain of concrete data and crack pattern of
Background The appropriate disposal of medication is a well-recognized issue that has convened growing recognition in several contexts. Insufficient awareness relating to appropriate methods for the disposal of unneeded medicine may result in notable consequences. The current research was conducted among the public in Iraq with the aim of examining their knowledge, attitude, and practices regarding the proper disposal of unused and expired medicines. Methods The present study used an observational cross-sectional design that was community-based. The data were obtained from using an online questionnaire. The study sample included people of diverse genders, regardless of their race or occupational status. The study mandated that all pa
... Show MoreAn experiment was conducted in pots under field conditions during fall seasons of 2017 and 2018. This study aimed to improve a weak growth of seedlings under salt stress in sorghum. Three factors were studied. 1st factor was three cultivars (Inqath, Rabeh, and Buhoth70). 2nd factor was seed priming (primed and unprimed seed). Seed were primed by soaking for 12 hours in a solution containing 300 + 70 mg L−1 of gibberellic (GA3) and salicylic (SA) acids, respectively. 3rd factor was irrigation with saline water (6, 9 and 12 dS m−1) resulting from dissolving sodium chloride in distilled water in addition to control treatment (distilled water). Randomized complete block design was used with four replications. In both seasons: the results sh
... Show More