Preferred Language
Articles
/
SYYjs4YBIXToZYALWrL9
Prediction of the Delay in the Portfolio Construction Using Naïve Bayesian Classification Algorithms
...Show More Authors
Abstract<p>Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postponement of delay of interim payments is at the forefront of delay factors caused by the employer’s decision. Even the least one is to leave the job site caused by the contractor’s second part of the contract, the repeated unjustified stopping of the work at the site, without permission or notice from the client’s representatives. The developed model was applied to about 97 projects and used as a prediction model. The decision tree model shows higher accuracy in the prediction.</p>
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Using modified earned value for cost control in construction projects
...Show More Authors

Scopus (13)
Scopus
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
Identificatio n Of Key Factors Affecting Waste Management In Life Cycle Of The Construction Project By Using Delphi Technique
...Show More Authors

The problem of generated waste as a result of the implementation of construction projects, has  been aggravated recently because of construction activity experienced by the world, especially Iraq, which is going through a period of reconstruction, where construction waste represents (20-40%) of the total generated waste and has a negative effect on the environment and economic side of the project. In addition, the rate of consumpted  amounts of natural resources are estimated to be about 40% in the construction industry, so it became necessary to reduce waste and to be manage well. This study aims to identify the key factors affecting waste management through the various phases of the project, and this is accom

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Classification of Arabic Alphabets Using a Combination of a Convolutional Neural Network and the Morphological Gradient Method
...Show More Authors

The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Integration Building Information Modeling and Lean Construction Technologies in the Iraqi Construction Sector: Benefits and Constraints
...Show More Authors

Building Information Modeling (BIM) and Lean Construction (LC) are two quickly growing applied research areas in construction management. This study focuses on identifying the most essential benefits and analyzing the most affecting constraints on the construction sector that construction players face as they attempt to combine BIM-LC in Iraqi construction. Experts assessed 30 benefits and 28 constraints from examining the previous literature, and a two-round Delphi survey formed the responses. Expert consensus analysis was utilized to elaborate and validate responses after descriptive statistical checks had been used for data processing.

According to the study's findings, the benefits include ensuring the most ef

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
...Show More Authors

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Aug 15 2023
Journal Name
Al-academy
The effectiveness of prediction and clairvoyance and its functions in the inner space
...Show More Authors

The research dealt with the effectiveness of prediction and foresight in design as a phenomenon that plays a role in the recipient's engagement with the design, as it shows the interaction between the recipient and the interior space. The designer is keen to diversify his formal vocabulary in a way that secures visual values that call for aesthetic integration, as well as securing mental and kinetic behavioral understanding in the interior space.
As the designer deals with a three-dimensional space that carries many visual scenes, the designer should not leave anything from it without standing on it with study and investigation, and puts the user as a basic goal as he provides interpretive data through prediction and foresight that le

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Science International.(lahore)
GALERKIN'S METHOD TO SOLVE THE LINEAR SECOND ORDER DELAY MULTI-VALUE PROBLEMS
...Show More Authors

Publication Date
Wed Jan 11 2023
Journal Name
Mathematical Problems In Engineering
Bayesian Methods for Estimation the Parameters of Finite Mixture of Inverse Rayleigh Distribution
...Show More Authors

Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref