Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postponement of delay of interim payments is at the forefront of delay factors caused by the employer’s decision. Even the least one is to leave the job site caused by the contractor’s second part of the contract, the repeated unjustified stopping of the work at the site, without permission or notice from the client’s representatives. The developed model was applied to about 97 projects and used as a prediction model. The decision tree model shows higher accuracy in the prediction.
The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show MoreBuilding Information Modeling (BIM) and Lean Construction (LC) are two quickly growing applied research areas in construction management. This study focuses on identifying the most essential benefits and analyzing the most affecting constraints on the construction sector that construction players face as they attempt to combine BIM-LC in Iraqi construction. Experts assessed 30 benefits and 28 constraints from examining the previous literature, and a two-round Delphi survey formed the responses. Expert consensus analysis was utilized to elaborate and validate responses after descriptive statistical checks had been used for data processing.
According to the study's findings, the benefits include ensuring the most ef
... Show MoreIn the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably
Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreThis research examines the impact of construction technology systems in contemporary architectural production through the study of the evolution in it systems, construction materials and methods of construction in addition to the digital revolution which provided possibilities of structural and architectural design in creating a distinct architectural product, as considered construction systems technology is the source of creativity in the architectural product, the research is assumed that the construction systems technology have achieved a structural innovation in production through the materials and methods of construction and digital design.
For Long time technology was connected to the
The adoption of many mathematical concepts contributes to the construction of models of sports and the population can be interpreted to explain the movement and growth of the population lead to proper planning to manage the requirements of the population and meet their needs of providing education or providing medical services, health and others. In this study, the number of births in the Governorate of Basrah for the period (1998-2050) is estimated to be based on the assumption that the population of the visually impaired is a stable society. If the rate of growth is (0.0492), some demographic indicators are important for maintaining the average age of women at pregnancy (27.817). Each woman will give birth (3.74) female birth d
... Show More